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Introduction 1
1.1 Motivation

In the early nineties, multi-factor modeling of the term structure of interest rates
became an important issue as empirical data suggested that single factor models
are inadequate in explaining the complex term structure movement. One highly
cited class of models is the class of so-called exponential affine models. Due to the
possibility of tracktable pricing formulas for interest rates derivatives, this class of
models is quickly becoming popular among researchers and practitioners alike.
However, even with its nice properties, estimating parameters of this particular
class of models can be quite challenging.

A number of parameter estimation methods have been proposed in the litera-
ture. One of the popular estimation methods is the so called state-space filtering
method, which is essentially a maximum likelihood estimation method under the
assumption that observations are corrupted with additive Gaussian noise. Pro-
cedures suggested so far start with time discretization of the underlying model
in order to apply known filtering techniques. Moreover, parameter estimates
are obtained through maximization of a quasi-likelihood functional. The quasi-
likelihood functional involves a stochastic process, the innovation process, that
is readily available in the computation of filtered estimates of the interest rate
factors. The word ‘quasi’ is put here because the innovations are assumed to be
independent Gaussian random variables, which is not necessarily true.

Theoretical results are available for parameter estimation in continuous-time.
With the assumption that observations are corrupted with additive Gaussian
noise, the exact likelihood functional can be computed. To our knowledge,
continuous-time identification methods have not been explored in the financial
context.

1.2 Goal

The goal of this thesis is to formulate and to implement the continuous-time max-
imum likelihood method for exponential-affine interest rate models. In order to
evaluate the performance of the proposed estimation method, we will fit a num-
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1. Introduction

ber of interest rate models to simulated data and to real data from the US and
European fixed income markets.

1.3 Structure of the Thesis

This thesis is organized as follows. The second chapter discusses the general
mathematical formulation of term structure modeling followed by a more spe-
cific exponential-affine class of models. This chapter include an overview of pa-
rameter estimation methodologies known in the literature. The continuous-time
maximum likelihood method is presented in Chapter 3. Here we present the
nonlinear filtering and an approximate Gaussian filter. Algorithms related to the
implementation of these filtering algorithms are also presented in the chapter. In
chapter 4, we present parameter estimation results of the Cox, Ingersol and Ross
model to simulated data and the US term structure. Chapter 5 is dedicated to
fitting BDFS and Chen models to the Euro swap rates and Euribor futures prices.
Conclusions and directions for further research are given in Chapter 6.

2



An Overview of Term Structure

Modeling and Estimation 2
2.1 Term Structure Modeling

The term structure of interest rates, commonly referred to as the term structure, is
defined as a series of zero coupon bond yields of different maturity dates at a par-
ticular time. In practice, the term structure can be implied from liquidly traded
bonds and other interest rates derivatives. As time evolves, the term structure
randomly changes shape. Empirical studies suggest that changes in some part of
the term structure also influences the other part of the term structure. By the fact
that the term structure is directly related to prices of interest rates derivatives,
proper understanding of its future behavior is essential in managing interest rate
sensitive portfolios.

2.1.1 Bonds and Interest Rates

Bonds are fixed income instruments that are issued by either governments or cor-
porations. Different kinds of bonds are traded on many exchanges. Some of these
are zero coupon bonds, coupon bearing bonds and callable bonds. A zero coupon
bond is defined as a financial security paying a fixed amount of cash at a future
maturity date without any intermediate payments in between (without coupons).
The fixed amount is called the bond’s principal value or the face value. Zero
coupon bonds are the most elementary interest rates derivatives. Coupon bear-
ing bonds can be broken down into a portfolio of these zero coupon bonds. For
this reason, zero coupon bonds are usually taken as the starting point of mathe-
matical modeling of the term structure of interest rates. While both zero coupon
bonds and coupon bearing bonds promise to pay certain cash-flows up to the
maturity date of the bond, the callable ones are inherently an option that given
certain conditions allow the exchange of the bond for a portion of the equity of
its corporate issuer. In general, the issuer of a bond may or may not be able to
honor their promise to pay the claims that are written on the contract. Thus,
bonds are subjected to default risk of its issuer. However, there are some bonds
that are generally regarded as proxies to default-free bonds. For example, the
United States treasury bonds and bonds that are issued by economically strong

3



2. An Overview of Term Structure Modeling and Estimation

European countries.
Let us denote the price at time t of a zero coupon bond maturing at time T by

B (t,T ) and assume that the bond’s principal value is normalized to a unit, i.e.
B (T ,T ) = 1. Note that instead of characterizing bonds with a fixed maturity date
T , alternatively, one may parameterize a bond with its time to maturity τ = T − t.

The yield to maturity Y (t,T ) of holding a zero coupon bond in the interval
[t,T ] is defined as the compounded rate of return of the bond:

Y (t,T ) = − 1

T − t
lnB (t,T ) , ∀t ∈ [0,T ] . (2.1)

The term structure of interest rates, or a yield curve, is the function that relates
Y (t,T ) to the maturity T . In practice, the term structure may be derived not
only from zero coupon bond prices, but also from quoted prices of other actively
traded instruments such as coupon bearing bonds, swaps and interest rates fu-
tures.

Forward rates f (t,T1,T2) are defined as the interest rates that prevail at time t
for riskless lending or borrowing over the future time interval [T1,T2]. It can be
realized by a portfolio of two bonds with two different maturities T1 and T2. The
forward rate is related to the bond price by the following equation:

B (t,T2)

B (t,T1)
= exp (−f (t,T1,T2) (T2 − T1)) (2.2)

or equivalently

f (t,T1,T2) = − lnB (t,T2) − lnB (t,T1)

(T2 − T1)
(2.3)

Note that the yield to maturity can be expressed as Y (t,T ) = f (t, t,T ), that is,
the interest rates over the time period [t,T ] as seen from time t.

In continuous-time modeling of bond prices, it is useful to consider the limit-
ing case of f (t,T1,T2) when T2 −→ T1. The resulting expression

f (t,T ) = lim
T2−→T

f (t,T ,T2)

is called the instantaneous forward rate. It is interpreted as the instantaneous inter-
est rate which prevails at time T as seen from time t. Unlike bond prices, yield
to maturities and forward rates, the instantaneous forward rate is a mathemat-
ical idealization rather than a physical quantity observed in the market. Given
instantaneous forward rates f (t,T ), bond prices are defined by setting

B (t,T ) = exp

(

−
∫ T

t

f (t, s) ds,

)

∀t ∈ [0,T ] . (2.4)

4



2.1 Term Structure Modeling

Thus if the bond price functional is sufficiently smooth with respect to the matu-
rity T , then instantaneous forward rates f (t,T ) can be written as:

f (t,T ) = −∂ lnB (t,T )

∂T
(2.5)

which follows from (2.3) by taking limits.
The instantaneous short rate r (t) is defined as the instantaneous risk-free bor-

rowing and lending interest rate at time t,

r(t) = lim
T−→t

f(t,T ).

It is the continuous-time version of the interest rate affecting the ordinary savings
accounts. Given {r (s) , 0 ≤ s ≤ t}, the time t value of a savings account subjected
to a continuously compounded interest rates is given by:

B (t) = exp

{
∫ t

0

r (s) ds

}

(2.6)

where here we have normalized the savings account so that B (0) = 1. Equiva-
lently, a savings account solves the differential equation

dB (t)

B (t)
= r (t) dt, B (0) = 1 (2.7)

The value of the savings accountB (t) represents the amount of cash accumulated
up to time t starting from a unit of initial investment at time 0. The connection
between short rates and bond prices can easily be made when r (t) is determin-
istic. In order to avoid arbitrage, the price of a zero coupon bond B (t,T ) must

be equivalent to a cash amount B̃ = exp
{

−
∫ T

t
r (s) ds

}

invested at time t in a

savings account. Therefore,

B (t,T ) = exp

{

−
∫ T

t

r (s) ds

}

, ∀t ∈ [0,T ] . (2.8)

This relationship is less straightforward in a stochastic setup.

2.1.2 Short Rates Modeling

In a stochastic setup, the instantaneous short rate is assumed to be an adapted

process r (t) on the filtered probability space
(

Ω, F, P, (F(t))t∈[0, T̃ ]

)

and inte-

grable with respect to the Lebesgue measure over an interval
[

0, T̃
]

for some

0 < T̃ < ∞. The filtration F = (F(t))t∈[0, T̃ ] is generated by Brownian motions

5



2. An Overview of Term Structure Modeling and Estimation

W P(t) driving the random process of r (t). Within this stochastic framework,
a zero coupon bond is formulated as a derivative instrument on the short rate.
Thus, in order to find the fair value B (t,T ) of a zero coupon bond, machinery
such as the risk neutral valuation method is useful.

Following the risk neutral valuation methodology, we first assume the exis-
tence of a savings account satisfying (2.7). A family of bond prices {B (t,T ) ,

0 ≤ t ≤ T , T ∈
[

0, T̃
]}

, is arbitrage-free if there exists a probability measure Q

equivalent to P such that for any T ∈
[

0, T̃
]

the relative bond price process
{

Z (t,T ) = B(t, T )
B(t) , 0 ≤ t ≤ T} is a martingale under Q (see e.g. Musiela and

Rutkowski (1998) for details). This implies that Z (t,T ) = E
Q (Z (T ,T ) F(t))

which enable us to express the bond price as:

B (t,T ) = E
Q

(

exp

{

−
∫ T

t

r(s) ds

}

F(t)

)

, ∀t ∈ [0,T ] (2.9)

Given the general expression (2.9), one needs to specify the stochastic process
of the underlying short rates r(t). Early approaches to model the instantaneous
short rates focused mainly on single-factor models. These models assume that the
short rates is driven by a single stochastic factor as it evolves through time e.g.
the Vasicek (1977) model which describe the instantaneous short rates as a Gaus-
sian process. A general equilibrium approach to short rates modeling developed
by Cox et al. (CIR, 1985) leads to a modification of the mean reverting diffusion
model of Vasicek. The model is known as the CIR square root model which under
certain technical conditions maintains positivity of the short rates. Further gener-
alizations and modifications can be found in Longstaff and Schwartz (1989) and
Hull and White (1990), among many others. Although in most cases one factor
models provide tractable bond price equations, where often analytical solutions
are known, empirical evidence suggests that bond price movements may depend
on more than one driving factor. Moreover, cross-sectional data often suggests
that simplistic one factor models fail to produce various shapes of the observed
term structure.

Let us now consider the following multi-factor model of the short rates. We

denote stochastic processes
{

(X1 (t) , . . . ,XnX
(t)) , t ∈ [0, T̃ ]

}

as stochastic fac-

tors of the short rates. These factors satisfy the Itô Stochastic Differential Equa-
tions (SDE):

dXi(t) = Fi (t,X(t)) dt+

nW
∑

j=1

Gi, j (t,X(t)) dW P
j (t); i = 1, . . . ,nX (2.10)

or, written in a matrix notation,

dX(t) = F (t,X(t)) dt+G (t,X(t)) dW P(t); X(0) = X0 (2.11)

6



2.1 Term Structure Modeling

where X(t) = [X1 (t) , . . . ,XnX
(t)]

∗. F :
[

0, T̃
]

× <nX 7→ <nX and G:
[

0, T̃
]

×
<nX 7→ <nW ×nX are assumed to satisfy certain regularity conditions (e.g. Lip-
schitz and growth conditions) to ensure the existence and uniqueness of the so-
lutions to (2.11). X0 is a random initial condition satisfying E

[

‖X0‖2
]

< ∞ and
{

W P(t), t ∈ [0, T̃ ]
}

is a nW -dimensional Brownian motion. The instantaneous

short rate is assumed to be a known function of the interest rate factors,

r(t) = ψ (t,X(t)) .

Theorem 2.1.1 (Musiela and Rutkowski (1998), Thm B.2.1 pp. 466) Let W P be a stan-

dard nW -dimensional Brownian motion on a filtered probability space
(

Ω, F, P, (F(t))t∈[0, T̃ ]

)

.

Suppose that λ is an adapted nW -valued process such that

E
P

[

∫ T̃

0

〈γ (s) , dW (s)〉 − 1

2

∫ T̃

0

‖γ (s) ‖2 ds

]

= 1 (2.12)

Define a probability measure Q on (Ω,FT̃ ) equivalent to P by means of the Radon-
Nikodym derivative

dQ

dP
Ft

= exp

{
∫ t

0

〈γ (s) , dW (s)〉 − 1

2

∫ t

0

‖γ (s) ‖2 ds

}

Then the stochastic process WQ, which is given by the formula

WQ(t) = W P(t) −
∫ t

0

γ(s)ds

is a standard nW -dimensional Brownian motion on the space (Ω, F, Q, (F(t))t∈[0, T̃ ]).

In view of the above Girsanov’s theorem, let γ(t) = λ(t,X(t)). This implies

WQ(t) = W P(t) −
∫ t

0

λ (s,X(s)) ds (2.13)

is a nW−dimensional Brownian motion under the equivalent measure Q. Thus,

under the equivalent measure Q, the state process
{

X(s), t ∈ [0, T̃ ]
}

can be writ-

ten as:

dX(t) = {F (t,X(t)) +G (t,X(t))λ (t,X(t))} dt+G (t,X(t)) dWQ(t),

X(0) = X0. (2.14)

The vector λ (t,X(t)) is often interpreted as the market price of risk, because the i-th
component of λ (t,X(t)) measures the extent to which risk taken in the i-th factor

7



2. An Overview of Term Structure Modeling and Estimation

is compensated by higher expected return. Since equivalent martingale measures
are fully characterized by the market price of risk, choosing a martingale measure
can be done by imposing certain restrictions on λ (t,X(t)). For tractability, market
price of risk is usually chosen such that the resulting risk neutral dynamics has
nice statistical properties.

By the Markov property of the interest rate factors (2.14), the price at time t of
a zero coupon bond with maturity T can be written as

B (t,T ,X(t)) = E
Q

(

exp

{

−
∫ T

t

ψ (s,X (s)) ds

}

F(t)

)

It follows from the Feynman-Kac formula (see Theorem 5.7.6 in Karatzas and
Shreve (1988)), the bond price equation (2.9) satisfies the following partial differ-
ential equation (PDE):

PB (t,T ,x) − ψ (t,x)B (t,T ,x) = 0 (2.15)

where the differential operator P is given by:

Pf =
∂f

∂t
+

nX
∑

k=1

∂f

∂xk
(F (t,x) +G (t,x)λ (t,x))k +

1

2

nX
∑

k=1

nW
∑

l=1

(G (t,x)G∗ (t,x))k, l
∂2f

∂xk∂xl
, (2.16)

with the boundary condition B (T ,T ,x) = 1. Given several interest rates factors,
solving the PDE (2.15) can be tedious, and in most cases the solution has to be
approximated numerically. Closed form solutions are available for a few specific
models. Semi-closed form solutions, in a sense that bond price can be obtained
by solving a set of ordinary differential equations (ODE) are available for a small
class of models. These classes include the exponential-affine term structure mod-
els (Duffie and Kan, 1993) and the exponential-quadratic term structure models
(Leippold and Wu, 2002).

2.2 The Exponential-Affine Term Structure Models

The exponential-affine term structure class of models (Duffie and Kan (1996)) is
one of the popular classes of models. There are at least three reasons for its pop-
ularity. First of all, as the name suggests, bond yields can be expressed as linear
functions of the interest rates factors. Secondly, this class of models simplifies the
bond pricing PDE into a set of ordinary differential equations. Thirdly, it spans
many of the popular one factor and multi-factor models. Examples of interest
rate models within the exponential affine class include:

8



2.2 The Exponential-Affine Term Structure Models

One-factor Vasicek (1977), Cox-Ingersol-Ross (1985) and Hull-White (1990)

Two-factor Longstaff -Schwartz (1992), Chen-Scott (1993)

Three-factor BDFS (1996), Fong-Vasicek (1991), Chen (1996)

2.2.1 Basic Assumptions

Following Duffie and Kan (1996), let X(t) denote a vector containing the short
rate factors

X(t) = [X1(t), . . . ,XnX
(t)]

∗ ∈ <nX×1, t ≥ 0. (2.17)

where X(t) satisfies the following stochastic differential equation (SDE):

dX(t) = (AX(t) +B) dt+ Σ diag (AX(t) + B)
1
2 dWQ(t) (2.18)

where A, A ∈ <nX×nX , B, B ∈ <nX×1 and Σ ∈ <nX×nX are constant matrices.
The instantaneous short rates process satisfies the affine relation:

r(t) = g0 + g∗1X(t) (2.19)

where g0 ∈ < and g1 ∈ <nX×1. WQ(t) ∈ <nX×1 is a vector of Q-Brownian mo-
tions.

It is convenient to preserve the structure of the interest rate model under a
change of measure in order to take advantage of the features provided by the
Q-model (2.18). To derive the appropriate change of measure, we first note that

by Girsanov’s theorem, WQ(t) = W P(t) −
∫ t

0
λ(s,X(s)) ds is a vector of standard

Brownian motions under the equivalent measure Q. This means that in order
to preserve the structure of the interest rate factors under the real measure P,
λ(t,X(t)) can be chosen as

λ(t,X(t)) = diag (AX(t) + B)
1
2 Λ

for some constant vector Λ = [λ1, . . . ,λnX
]
∗. With this particular choice of λ, the

interest rate factors can now be written as

dX(t) =
(

APX(t) +BP
)

dt+ Σ diag (AX(t) + B)
1
2 dW P(t) (2.20)

where

AP = A+ Σ diag (Λ) A,

BP = B + Σ diag (Λ) B.

9



2. An Overview of Term Structure Modeling and Estimation

2.2.2 Pricing of European-style Derivatives

Let V (t;T ,X(t)) , 0 ≤ t ≤ T be the time t value of a derivative instrument that
pays off h (X(T )) ∈ < at a maturity time T . V (t;T ,X(t)) satisfies

V (t;T ,X(t)) = E
Q

[

exp

(

−
∫ T

t

r(s) ds

)

h (X(T )) F(t)

]

(2.21)

where F(t) is the σ-algebra generated by the Brownian motions driving the inter-
est rate factors. Equivalently, using the Feynman-Kac formula, V (t;T ,x) satisfies
the following partial differential equation (PDE)

(g0 + g∗1x)V =
∂V

∂t
+

nX
∑

k=1

(Ax+B)k

∂V

∂xk
+

1

2

nX
∑

k=1

nX
∑

l=1

(Σ diag(Ax+ B)Σ∗)k, l
∂2V

∂xk∂xl
(2.22)

where we have substituted r(t) = g0 + g∗1X(t), subject to the boundary condition
V (T ;T ,x) = h (x).

The solution to (2.22) can be obtained with the help of Arrow-Debreu secu-
rities. Let us denote Vδ (t;T ,X(t), y) to be the time t value of an Arrow-Debreu
security which pays off

hδ(X(T ); y) = δ(X(T ) − y)

at the maturity time T . Thus, Vδ(t;T ,x, y) satisfies the PDE (2.22) subject to the
boundary condition Vδ (T ;T ,x, y) = δ (x− y). Consider its Fourier transform in
y:

V̄δ (t;T ,x,u) =

∫

<nX

exp (−i〈u, y〉) Vδ (t;T ,x, y) dy. (2.23)

V̄δ (t;T ,x,u) satisfies the pricing PDE (2.22) subject to the boundary condition

V̄δ (T ;T ,x,u) = exp (−i〈u,x〉) (2.24)

The solution has exponential-affine form (Duffie and Kan (1996))

V̄δ (t;T ,x,u) = eC(t;T , u)∗x+D(t;T , u)

where

dD (t;T ,u)

dt
= g0 − C (t;T ,u)

∗
B − 1

2

nX
∑

k=1

[(C(t;T ,u)∗Σ)k]
2 Bk (2.25)

dC (t;T ,u)
∗

dt
= g∗1 − C (t;T ,u)

∗
A− 1

2

nX
∑

k=1

[(C(t;T ,u)∗Σ)k]
2 Ak, . (2.26)
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2.2 The Exponential-Affine Term Structure Models

subject to boundary conditions:

C (T ;T ,u) = −iu and (2.27)

D (T ;T ,u) = 0. (2.28)

Ak, · denote the k-th row of A. Thus, Vδ(t;T ,x, y) can be obtained via the inverse
Fourier transform

Vδ(t;T ,x, y) =
1

(2π)nX

∫

<nX

exp (i〈u, y〉) V̄δ (t;T ,x,u) du

Given the price Vδ (t;T ,x, y) of the Arrow-Debreu security, the solution of the
pricing equation (2.22) is given by

V (t;T ,x) =

∫

<nX

Vδ (t;T ,x, y) h (y) dy (2.29)

2.2.2.1 Derivatives with Exponential Pay-off

For derivatives with an exponential pay-off structure, the current value of the
derivatives product can be found without performing a Fourier transformation.

Let Va(t;T ,X(t),h0,h1) denote the time t value of a derivative which pays off

ha(X(T )) = exp(h0 + h∗1X(T ))

at the maturity T . From (2.29), Va(t;T ,x) satisfies:

Va (t;T ,x,h0,h1) =

∫

<nX

V δ (t;T ,x, y) ha (y) dy

= eh0

∫

<nX

V δ (t;T ,x, y) e−i〈(ih1), y〉 dy

= eh0 V̄ δ (t;T ,x, ih1)

Thus, Va (t;T ,x,h0,h1) can be written as

Va (t;T ,x,h0,h1) = exp
(

Ca (t;T ,h0,h1)
∗
x+Da (t;T ,h0,h1)

)

where

dDa (t;T ,h0,h1)

dt
= g0 − Ca (t;T ,h0,h1)

∗
B −

1

2

nX
∑

k=1

[(Ca(t;T ,h0,h1)
∗Σ)k]

2 Bk (2.30)

dCa (t;T ,h0,h1)
∗

dt
= g∗1 − Ca (t;T ,h0,h1)

∗
A−

1

2

nX
∑

k=1

[(Ca(t;T ,h0,h1)
∗Σ)k]

2 Ak, · (2.31)

11



2. An Overview of Term Structure Modeling and Estimation

with boundary conditions

Ca (T ;T ) = h1 and (2.32)

Da (T ;T ) = h0. (2.33)

Zero Coupon Bonds

A zero coupon bond pays a unit amount of money at the delivery time T . Let
B (t;T ,X(t)) denote the price of a bond at time t. B (t;T ,X(t)) satisfies:

B (t;T ,X(t)) = E
Q

[

exp

(

−
∫ T

t

r(s) ds

)

h (X(T )) F(t)

]

where h(x) = 1. Thus, B (t;T ,X(t)) = Va(t,T ,X(t), 0,~0). Sometimes, it is more
convenient to express the bond price in terms of the remaining time to maturity
τb(t) = T − t. The bond price B(t; t+ τb(t),X(t)) satisfies

B(t; t+ τb(t),X(t)) = exp(Cb(τb(t))
∗X(t) +Db(τb(t)))

where by (2.31) and (2.30), Cb(τ) and Db(τ) satisfy

dDb (τ)

dτ
= −g0 + Cb (τ)

∗
B +

1

2

nX
∑

k=1

[(Cb(τ)
∗Σ)k]

2 Bk

dCb (τ)
∗

dτ
= −g∗1 + Cb (τ)

∗
A+

1

2

nX
∑

k=1

[(Cb(τ)
∗Σ)k]

2 Ak, ·

with boundary conditions Cb(0) = ~0 and Db(0) = 0.

Futures on a Zero Coupon Bond

Futures on a zero coupon bond delivers an underlying bond with a constant
time to maturity τb, at a delivery time Td. Let τf (t) be the remaining time to
delivery of the futures. The futures price Vf (t; t+ τf (t), τb,X(t)) is given by

Vf (t; t+ τf (t), τb,X(t)) = E
Q (B (Td;Td + τb,X(Td)) F(t))

= E
Q
(

eCb(τb)
∗X(Td)+Db(τb) F(t)

)

(2.34)

Thus,
Vf (t; t+ τf (t), τb,X(t)) = eCf (τf (t))X(t)+Df (τf (t))

where Cf (τ) and Df (τ) satisfy

dDf (τ)

dτ
= Cf (τ)

∗
B +

1

2

nX
∑

k=1

[(Cf (τ)∗Σ)k]
2 Bk (2.35)

dCf (τ)
∗

dτ
= Cf (τ)

∗
A+

1

2

nX
∑

k=1

[(Cf (τ)∗Σ)k]
2 Ak, · (2.36)
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2.3 Estimation of Exponential-Affine Term Structure

with boundary conditions Cf (0) = Cb(τb) and Df (0) = Db(τb).

2.3 Estimation of Exponential-Affine Term Structure

In implementing a given interest rate model for risk management and pricing
purposes, parameters that characterize the model must be estimated from market
data. The procedure of estimating model parameters is commonly referred to as
model calibration. The easiest approach to estimate the parameters is through least
squares, by minimizing the sum of squared errors between theoretical prices and
their quoted market prices. Derivatives such as bonds, vanilla options on bonds,
futures and swaps may be used. The procedure can be easily implemented and
repeated whenever new parameter estimates are required. The interest rate fac-
tors, that are unobservable, are treated as unknown parameters in the estimation
procedure. By doing so, one ignores the statistical characteristics of the underly-
ing stochastic factors. In order to take into account these characteristics, we need
to apply more sophisticated statistical techniques such as maximum likelihood
estimation.

2.3.1 Observed Interest Rate Factors

Let
y(tk) = H(tk,X(tk))

be a ny-dimensional vector observation whereH(t,x) = ~C(t)x+ ~D(t), tk = t0+kh,

k = 1, . . . ,nT , h is a fixed step-size, y(t) ∈ <ny×1, ~C(t) ∈ <ny×nX , ~D(t) ∈ <ny×1.
The number of observations is assumed to be equal to the number of factors,

ny = nX , and ~C(t) is invertible for all t ≥ 0.
Maximum likelihood estimation (MLE) methods rely on the computation of

the transition density fy(y(tk+1) y(tk)). Let H−1(t, y) = ~C(t)−1(y − ~D(t)). The
the transition density of y can be determined from the transition density of X :

fy, tk, tk+1
(y(tk+1)| y(tk)) = fX, tk, tk+1

(H−1(y(tk+1))|H−1(y(tk))) det

(

∂H−1(t, y)

∂y

)

.

Unfortunately, for exponential-affine models, the closed-form density is only avail-
able in a few cases; for Gaussian models, or when the interest rate factors are
independent square root models. The transition density can always be approxi-
mated by numerically solving the forward Kolmogorov equation. However, the
curse of dimensionality kicks in when the number of interest rate factor increases.
The following methods are relatively simpler to implement and potentially faster
than solving the Kolmogorov equation.
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2. An Overview of Term Structure Modeling and Estimation

2.3.1.1 Euler Approximation

The Euler approximation of the exponential-affine model can be written as

X(tk+1) ≈ X(tk) + (APX(tk) +BP) h+ Σ diag(AX(tk) + B)1/2
√
h εk+1

where {εk, k ≥ 0} are i.i.d standard Gaussian random variables. Using the above
Euler approximation, the conditional density can be approximated as:

fX, tk, tk+1
(X(tk+1)| X(tk)) ≈ Φ(µk,σk)

where Φ denotes the multivariate Gaussian density with mean and covariance
µk = X(tk) + (APX(tk) + BP) h and σk = Σ diag(AX(tk) + B)Σ h respectively.
If the first two moments of the transition density are known exactly, it is better
to approximate the transition density with a Gaussian density using these exact
moments rather than using moments obtained from the Euler approximation.

2.3.1.2 Monte-Carlo integration

Another way of approximating the transition density fX, tk, tk+1
(X(tk+1)| X(tk))

is by a Monte-Carlo integration. This approximation has been used in simu-
lated maximum likelihood estimation methods proposed by Pedersen (1995) and
Santa-Clara (2005).

For a small time interval ∆, let s = tk+1 − ∆ > tk. We use the Euler approxi-
mation to write:

X(tk+1) ≈ X(s) + (APX(s) +BP) ∆ + Σ diag(AX(s) + B)
1
2

√
∆ εk+1 (2.37)

where {εk, k ≥ 0} are i.i.d standard Gaussian random variables. The transition
density can be written as

fX, tk, tk+1
(X(tk+1)| X(tk)) =

∫

<nX

fX, s, tk+1
(X(tk+1)| z) fX, tk, s(z | X(tk)) dz

With the Euler discretization (2.37), fX, s, tk+1
(X(tk+1)| z) can be approximated as

fX, s, tk+1
(X(tk+1)| z) ≈ Φ(µ(z)),σ(z))

where Φ denotes the multivariate Gaussian density with mean and covariance
µ(z) = z + (APz +BP) ∆ and σ(z) = Σ diag(Az + B)Σ ∆ respectively. Thus,

fX, tk, tk+1
(X(tk+1)| X(tk)) ≈

∫

<nX

Φ(µ(z),σ(z)) fX, tk, s(z| X(tk)) dz (2.38)

The integral (2.38), can further be approximated using a Monte-Carlo integration.
LetX(s)[l] , l = 1, . . . ,N be the l-th realization of X(s) which is obtained through
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a Monte-Carlo simulation starting from X(tk) at time tk. Note that simulations
of X(s) can be done with Euler or some other higher order discretization of X(t).
The integral (2.38) can be approximated as

fX, tk, tk+1
(X(tk+1)| X(tk)) ≈ 1

N

N
∑

l=1

φ(µ(X(s)[l]),σ(X(s)[l]))

2.3.1.3 Fourier inversion

For exponential affine models, the characteristic function can be found by solving
a set of ordinary differential equations. By computing the characteristic function
at a finite number of points, the conditional density can be approximated by using
Fourier transform.

The characteristic function of X can be written as

FX, tk, tk+1
(u,X(tk)) = E [exp(i〈u,X(tk+1)〉) X(tk)]

=

∫

<nX

exp (i〈u, z〉) fX, tk, tk+1
(z| X(tk)) dz

for all u ∈ <nX×1 and the imaginary unit i. For exponential-affine models,

FX, tk, tk+1
(u,X(tk)) = exp (c(h;u)∗X(tk) + d(h;u))

where c(τ ;u) and d(τ ;u) satisfies:

d

dτ
c(τ ;u)∗ = c(τ ;u)∗AP +

1

2

nX
∑

k=1

(c(τ ,u)∗Σ)2kAk, ·

d

dτ
d(τ ;u) = c(τ ;u)∗BP +

1

2

nX
∑

k=1

(c(τ ,u)∗Σ)2kBk

with boundary conditions c(0;u) = iu and d(0;u) = 0. The conditional density
can be computed by

fX, tk, tk+1
(X(tk+1))| X(tk)) =

1

(2π)
nX

∫

<nX

Re
(

e−i〈u, X(tk+1)〉 FX, tk, tk+1
(u,X(tk))

)

du.

This inversion can be implemented using fast Fourier transform (FFT).
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2.3.2 Unobserved Interest Rate Factors

Unfortunately, the number of observations are generally larger than the num-
ber of factors of the interest rate, ny > nX . In this case, one may assume that
nX observations are observed without noise while the remaining are corrupted
with additive Gaussian noise. However, this is difficult to implement in practice
because there is no clear guideline on which part of the term structure can be
assumed to be perfectly observed.

Alternatively, one may assume that the whole term structure is observed with
noise. The assumption is not unrealistic, considering that term structures are
mostly implied from derivative securities for which the computation procedure
may involve some sort of interpolation technique. Furthermore, for parameter
estimation a unique price has to be determined from bid-ask prices of the deriva-
tives. These will add errors to the observations. Adding errors to all observations
means that we will not be able to invert the interest rate factors from observed
data. This is where filtering become useful.

Filtering is particularly attractive to estimate parameters of the exponential-
affine interest rate models, due to the fact that bond yields can be expressed as
linear functions of the latent factors. This method have been used by Pennacchi
(1991), Chen and Scott (1993), Duan and Simonato (1999), Lund (1997), De Jong
(2000), Geyer and Pichler (1999), Jegadeesh and Pennacchi (1996) and others. In
order to illustrate the method, we will outline the approach given in Duan and
Simonato. First, the Euler approximation of the interest rate factors can be written
as

X(tk+1) = X(tk) + (APX(tk) +BP) h+ Σ diag(AX(tk) + B)
1
2

√
h εk+1

and the vector of observations is denoted by

y(tk+1) = ~C(tk+1)X(tk+1) + ~D(tk+1) + ε̃k+1

where {εk, k ≥ 0} and {ε̃k, k ≥ 0} are mutually independent standard Gaussian
random variables. For linear Gaussian models,

I(tk) = y(tk) −
{

~C(tk)E [X(tk) y(tj), j = 0, . . . , k − 1] + ~D(tk)
}

are independent Gaussian random variables, which means that obtaining the
estimate of the unknown parameter Θ involves the maximization of the log-
likelihood

L (Θ) = −1

2

{

nT
∑

k=0

I(tk)R(tk)−1I(tk) + log det (R(tk))

}

(2.39)

The stochastic process {I(tk), k ≥ 0} is called innovation and R (tk) denote the co-
variance of I(tk), both of which can be readily obtained using the Kalman filtering
algorithm.

16



2.3 Estimation of Exponential-Affine Term Structure

In the general nonlinear case, the innovations are not necessarily Gaussian.
However, in all literature mentioned above, the innovations are assumed to be
Gaussian and parameter estimate are obtained by maximizing the (quasi) likeli-
hood (2.39).
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A Continuous-time Maximum

Likelihood Estimation 3
3.1 Introduction

As we have mentioned in the previous chapter, one characteristic of the estima-
tion methods existing in the literature is that they invariably discretize the ob-
servation equation and/or the interest rate (state) equation. The discretization
makes it easier to use standard statistical techniques.

In this chapter, we use the continuous-time maximum likelihood method for
the parameter estimation of interest rate models. We restrict our analysis to the
exponential-affine term structure model in order to exploit the computational ad-
vantages offered by this particular class of models. The estimation method pro-
posed in this chapter rests on the assumption that the observation (e.g. bond
yields) are contaminated with additive Gaussian noise with a known covariance.
This particular assumption placed our method in a similar line of approaches
proposed by Pennachi (1991) and others. However, unlike these approaches, we
will not discretize either the measurement or the interest rate model.

3.2 Setup and Notation

Let us start by modeling interest rate factors Xk(t), k = 0, . . . ,nX and t ≥ 0 as
exponential-affine. The interest rate factors satisfy

dX(t) = (AX(t) + B) dt + Σ diag(AX(t) + B)
1
2 dW Q(t) (3.1)

where X(t) = [X1(t), . . . ,XnX
(t)]∗. The vector W Q(t) = [W Q

1 (t), . . . ,W Q
nX

(t)]∗

is composed of independent Q-Brownian motions. The superscript ‘*’ denotes
matrix transpose. Under the real-world measure P, the interest rate factors satisfy

dX(t) = (APX(t) + BP) dt + Σ diag(AX(t) + B)
1
2 dW P(t) (3.2)

The matrices A, AP, A ∈ <nX×nX , B, BP, B ∈ <nX×1 and Σ ∈ <nX×nX are
constant matrices. The interest rate is defined as an affine function of the interest
rate factors. i.e.

r(t) = g0 + g∗1X(t), (3.3)
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where g0 ∈ < and g1 ∈ <nX×1 are constants.
Given the interest rate model (3.1), the corresponding yield at time t, of a zero

coupon bond with maturity t + τ(t), can be written as an affine function of the
interest rate factors X(t). That is,

y(t, t + τ(t)) = −1

τ
(Cb(τ(t))∗X(t) + Db(τ(t))) (3.4)

The functions Cb(τ) ∈ <nX×1 and Db(τ) ∈ < satisfy the following systems of
ordinary differential equations:

d

dτ
Cb(τ) = −g1 + A∗Cb(τ) +

1

2

nX
∑

k=1

[(Cb(τ)∗Σ)k]
2 A∗

k, . (3.5)

d

dτ
Db(τ) = −g0 + B∗Cb(τ) +

1

2

nX
∑

k=1

[(Cb(τ)∗Σ)k]
2 Bk (3.6)

with boundary conditions C(0) = ~0 and D(0) = 0. Ak, . and Bk denote the k-th
row of A and B respectively.

Let

~y(t) =









y(t, t + τ1(t))
...

y(t, t + τny
(t))









be the vector of ny bond yields at time t with various time to maturities τk(t),
k = 1, . . . ,ny . By (3.4), we can write

~y(t) = ~C(t)X(t) + ~D(t) (3.7)

where

~C(t) =









− 1
τ1(t)

Cb(τ1(t))
∗

...

− 1
τny (t)Cb(τny

(t))∗









, ~D(t) =









− 1
τ1(t)

Db(τ1(t))
...

− 1
τny (t)Db(τny

(t))









.

Within the exponential-affine framework, log prices of derivatives such as futures
on the interest rate, futures on bond, forwards, and many more, with varying de-
livery dates can be written as affine functions similar to (3.7). For the sake of
clarity, in this chapter we will concentrate only on vector observations involving
yields with varying maturities. The estimation method described in this chap-
ter can be easily modified to include other derivatives as long as we are able to
transform their prices to an affine function of the interest rate factors.
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In continuous-time, we will consider the integrated measurements

Y (t) =

∫ t

0

~yobs(s) ds

where ~yobs(t) is the observed value of ~y(t). Y (t) satisfies the following SDE:

dY (t) =
(

~C(t)X(t) + ~D(t)
)

dt + dW0(t) (3.8)

W0(t) ∈ <ny×1 is a vector of Brownian motions, independent to W P(t), with a
known covariance matrix R ∈ <ny×ny .

3.3 The Likelihood Functional

Let Y(t) = σ {Y (s), 0 ≤ s ≤ t}. Suppose the set of observations {Y (s), 0 ≤ s ≤ Ty}
is available for parameter estimation. By the assumption that Y (t) satisfies the
measurement equation (3.8) and the observed interest rate X(t) satisfies the state
equation (3.2), the log of the likelihood functional is given by (see e.g. Poor (1994))

L(Θ) = R−1

∫ Ty

0

{

〈H(X)(t), dY (t)〉 − 1

2
‖H(X)(t)‖2dt

}

, (3.9)

where Θ denotes the vector containing all unknown parameters that describe
the dynamics of the state X(t) (both under the risk neutral measure Q and the
real-world measure P) and the measurement Y (t). The bracket term denotes an
inner product < a, b >, Tr(a∗b) and ‖a‖2 ,< a, a >. The time varying variable

H(X)(t) is defined as the estimate of H(t,X(t)) = ~C(t)X(t) + ~D(t) given Y(t),
i.e.

H(X)(t) = E [H(t,X(t)) Y(t)]

= E

[

~C(t) X(t) + ~D(t) Y(t)
]

= ~C(t) E [X(t) Y(t)] + ~D(t)

= ~C(t) X(t) + ~D(t)

where
X(t) = E [X(t) Y(t)] .

The estimate of the unknown vector Θ can be found by maximizing the log like-
lihood functional (3.9). That is,

Θ̂ = argmax
Θ

L(Θ).
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3. A Continuous-time Maximum Likelihood Estimation

Unfortunately, with the setup given above, the observation process {Y (t), t ∈ [0,Ty]}
which is the solution of (3.8) is only an idealization. The real data that one ob-
serves in practice cannot be non differentiable everywhere, as the measurement
model (3.8) implies. Every measurement instrument acts as a bandpass filter to

the original idealized data
{

Ẏ (t), t ∈ [0,Ty]
}

. Thus the data is always absolutely

continuous and in the Wiener space, the set of absolutely continuous functions
has measure zero. This means the likelihood functional (3.9) cannot be applied
directly to real data.

One way to circumvent the difficulty, due to Balakrishnan (1977), is to try to
model the observation process directly with the white noise output. Although
modeling white noises directly is intuitively appealing, it brings a host of math-
ematical complications. This is because, in this theory, one has to work with
finitely additive measures on an appropriate Hilbert space and these measures
cannot be extended to countably additive measures on that space. Kallianpur
and Karandikar (1988) developed a comprehensive theory of nonlinear estima-
tion in this framework. The remarkable advantage of this theory is that, once the
mathematical difficulties are resolved, the results obtained are always in the form
where real data can be directly used.

Under the white noise framework, Balakrishnan (1977) showed that a correc-
tion term must be added to the likelihood functional. The corrected likelihood is
given by:

L(Θ) = R−1

∫ Ty

0

{

〈H(X)(t), ~yobs(t)〉 − 1

2
‖H(X)(t)‖2

}

dt −

R−1 1

2

∫ Ty

0

P̃ (t) dt (3.10)

where

P̃ (t) = E
[

‖H(X(t)) − H(X)(t)‖2 Y(t)
]

.

= ~C(t)E
[

‖X(t) − X(t)‖2 Y(t)
]

~C(t)∗.

Interestingly, the above likelihood functional is the exact limit of the correspond-
ing result of Wong and Zakai for the band-limited processes, as the bandwidth

increases without bound. The correction term −R−1 1
2

∫ T

0
P̃ (t) dt is sometimes re-

ferred to as the Wong-Zakai correction term. A review of theoretical results in the
white noise framework can be found in (Bagchi (1994)).

For later comparison, we will refer the likelihood functional (3.10) as the ro-
bust likelihood, while the following likelihood

L(Θ) = R−1

∫ Ty

0

{

〈H(X)(t), ~yobs(t)〉 − 1

2
‖H(X)(t)‖2

}

dt (3.11)

will be referred to as the Itô likelihood.
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3.4 Nonlinear Filtering of Interest Rate Factors

3.4 Nonlinear Filtering of Interest Rate Factors

Maximizing the log-likelihood functional is a straightforward exercise, and it can
be implemented quickly with many available optimization packages. What is not
so clear at this point, is the computation of the conditional expectation X(t) and
moreover, whether it is possible to compute X(t) recursively given an increasing
amount of observations through time. Fortunately, the solution to this problem
is well-known and recursive solutions have been developed for a large class of
models. In control literature, the procedure to estimate an unobserved stochastic
variable from a set of observations up to the current time instant is known as
filtering. In what follows, we are going to highlight some equations for nonlinear
filtering that are relevant to our estimation problem. We note that these equations
are widely available in standard nonlinear filtering textbooks.

3.4.1 Equations for Nonlinear Filtering

Let us consider the conditional moments of X(t) given the set of observations
Y(t),

φ(X)(t) = E [φ(t,X(t)) Y(t)] (3.12)

and denote

H(t,x) = ~C(t)x + ~D(t)

such that the drift term of the measurement equation (3.8) is H(t,X(t)). With the
assumption that W (t) and W0(t) are independent, φ(X)(t) satisfies the Kushner-
Stratonovich equation (Kushner (1967), Stratonovich (1968)) :

φ(X)(t) = φ(X)(0) +

∫ t

0

L∗φ(X)(s) ds

+

∫ t

0

(

φH∗(X)(s) − φ(X)(s) H∗(X)(s)
)

R−1dI(s)

(3.13)

where L∗ is the backward Kolmogorov operator

L∗f(t,X) = −
nX
∑

k=1

∂

∂Xk

{

(APX + BP)kf(t,X)
}

+

1

2

nX
∑

k=1

nX
∑

l=1

∂2

∂Xk∂Xl
{diag(AX + B)k, lf(t,X)} (3.14)

and I(t) = Y (t) − H(X)(t). The stochastic process I(t) is called the innovation
process.
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3. A Continuous-time Maximum Likelihood Estimation

Algorithm 1 Kalman filtering

For A = 0nX×nX
and B = 1nX×1, the filtered estimate X̂(t) is given by the fol-

lowing Kalman filtering equations:

K(t) = P (t)~C(t)∗ (3.16)

dX(t) = (APX(t) + BP)dt +

K(t)R−1(dY (t) − (~C(t)X(t) + ~D(t))dt) (3.17)

d

dt
P (t) = APP (t) + PAP∗ − K(t)R−1K(t)∗ + ΣΣ∗ (3.18)

For φ(t,X) = X , The filtering equation (3.13) gives:

X(t) = X(0) +

∫ t

0

APX(s) + BP ds

+

∫ t

0

(

XH∗(X)(s) − X(s) H(X)(s)∗
)

R−1dI(s) (3.15)

where XH∗(X)(s) will depend on XH∗H∗(X)(s). Similarly, XH∗H∗(X)(s) will
depend on XH∗H∗H∗(X)(s) and so forth. Thus, in general we may not be able to
compute the filtered estimate X(t) using a finite number of equations. One spe-
cial case where X(t) can be computed by a finite number of recursive equations
is when X(t) is Gaussian. The recursive filtering procedure for the Gaussian case
is given by the celebrated Kalman filtering algorithm.

Another way to compute the conditional moments of X(t) is to directly com-
pute the conditional density. Suppose that

φ(X)(t) =

∫

<nX

φ (t,X) p (t,X) dX,

where p (t,X) denotes the conditional density of X(t) given the σ-algebra Y(t).
The filtering equation (3.13) implies that the conditional density p (t,X) satisfies
the following stochastic integro-differential equation

dp (t,X) = L∗p (t,X) dt +

p(t,X)

(

H (t,X) −
∫

<nX

H (t,X) p (t,X) dX

)

R−1dI(t).

(3.19)

In principle, once the conditional density p (t,X) has been found, all condi-
tional moments of X(t) given Y(t) can be computed. However, solving (3.19)
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3.4 Nonlinear Filtering of Interest Rate Factors

is very difficult due to the integral term appearing on the right hand side of the
equation. Very often, it is more convenient to compute the unnormalized condi-
tional density q(t,X) which is defined as

p (t,X) =

(
∫

<nX

q (t,X) dX

)−1

q (t,X) .

The unnormalized conditional density satisfies the Zakai equation (Zakai (1969)):

dq (t,X) = L∗q (t,X) dt + q (t,X) R−1〈H (t,X) , dY (t)〉. (3.20)

Observe that the integral term in (3.19) is completely absent in the Zakai equation
(3.20). This simplifies the computation of p (t,X) considerably. Given q(t,X), the
conditional mean and conditional covariance of the interest rate factors are given
by:

X(t) = E [X(t) Y(t)] =

∫

<nX
X q (t,X) dX

∫

<nX
q (t,X) dX

(3.21)

P (t) = E
[

‖X(t) − X(t)‖2 Y(t)
]

=

∫

<nX
‖X − X(t)‖2 q (t,X) dX
∫

<nX
q (t,X) dX

(3.22)

3.4.2 Numerical Approximation of the Zakai Equation

Although the Zakai equation is relatively easier to solve compared to the Kushner-
Stratonovich equation (3.19), in general, a closed-form solution is still difficult to
obtain. Thus, we often need to apply numerical methods to approximate the solu-
tion of (3.20). For our estimation procedure, we employ the splitting-up method
(Le Gland (1989)). This method splits the differential operator (3.20) into two
parts, a deterministic differential operator and a stochastic differential operator,
and solve them separately.

To illustrate the algorithm, let us introduce the following time discretization
on the interval [0,Ty]

0 = t0 < t1 = t0 + ∆ < . . . < tk = tk−1 + ∆ < . . . < tN = Ty. (3.23)

Following LeGland (1989), let q (tk,X) be approximated by q∆ (tk,X). The tran-
sition from q∆ (tk,X) to q∆ (tk,X) can be summarized into the following two
steps:

1a. The prediction step. Solve

∂

∂t
f (t,X) = L∗f (t,X) (3.24)

between times tk and tk+1 with the initial condition f (tk,X) = q∆ (tk,X)
to obtain f (tk+1,X).

25



3. A Continuous-time Maximum Likelihood Estimation

2a. The correction step. Update f (tk+1,X) from the prediction step by solving:

dg (t,X) = g (t,X) R−1〈H (t,X) , dY (t)〉 (3.25)

with the initial condition g (tk,X) = f (tk+1,X). Furthermore, we assign

q∆ (tk+1,X) = g (tk+1,X) . (3.26)

The updating equation (3.25) can be explicitly solved, namely:

g (tk+1,X) = f (tk+1,X) Φ∆ (tk+1,X) (3.27)

where

log Φ∆ (t,X) = R−1

∫ tk+1

tk

(

〈H (t,X) , dY (t)〉 − 1

2
‖H (t,X)‖2

dt

)

(3.28)

It was shown by Bensoussan and Glowinski (1989) that when ∆ −→ 0, q∆ (tk,X)
converges strongly to q (tk,X).

In practice, the above algorithm is very difficult to implement because the
resulting numerical solution often dissipates quickly. A common work-around to
this problem is to subsequently normalize the updating equation (3.27) by using
the following step in place of step 2a of the above algorithm.

2b. Update f (tk+1,X) from the prediction step by computing

q∆ (tk+1,X) = ck+1 f (tk+1,X) Φ∆ (tk+1,X) (3.29)

where ck+1 is a normalizing factor so that ck+1

∫

<nX
q∆ (tk+1,X) dX = 1.

In the implementation of the splitting-up algorithm, another approximation is
needed in the computation of Φ∆

k+1 (t,X) as it contains a stochastic integral term
involving the measurement Y (t). Here we can use the following approximation
for the stochastic integral term

∫ tk+1

tk

〈H (t,X) , dY (t)〉 ≈
∫ tk+1

tk

〈H (t,X) , ~yobs(t)〉dt

(Balakrishnan (1981)).

3.4.3 Gaussian Approximation

The numerical approximation of the conditional density via the splitting-up algo-
rithm can be made to be highly accurate. However, for a multi-factor exponential-
affine model, the algorithm is very time consuming. We note that the computa-
tion speed may still be acceptable given an identified system. However, for pa-
rameter estimation that may require many iterations in the optimization of the
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3.4 Nonlinear Filtering of Interest Rate Factors

likelihood functional, the splitting-up method becomes impractical. In order to
speed up the computation, we may need to sacrifice accuracy and use some sort
of approximate filter. Here we propose an approximate filter based on Gaussian
approximation of the conditional density.

Let us denote

F (X) = APX + BP

G(X) = Σdiag(AX + B)
1
2

H(t,X) = ~C(t)X + ~D(t)

where F (X(t)) and G(X(t)) are the drift and volatility term of the interest rate
factor respectively, and H(t,X(t)) is the drift term of the measurement equation.
In general, we can express the nonlinear filtering solution as (see e.g. Poor (1994))

dX(t) = F (X)(t) dt +

K(t)R−1
(

dY (t) − H(X)(t) dt
)

(3.30)

where
K(t) =

(

X H∗(X)(t) − X(t)H∗(X)(t)
)

. (3.31)

By substituting H(X) into K(t), we obtain

K(t) = P (t)~C(t)∗

where the conditional covariance matrix P (t) = E
[

‖X(t) − X(t)‖2 Y(t)
]

satisfies

dP (t) =
(

X − X(t)
)

F ∗(X)(t) dt + F
(

X − X(t)
)∗

(X)(t) dt +

GG∗(X)(t)dt − K(t)R−1K(t)∗dt +
(

(

X − X(t)
) (

X − X(t)
)∗

H(X)(t) − P (t)H(X)(t)
)∗

×

R−1
(

dY (t) − H(X)(t) dt
)

. (3.32)

We can further simplify (3.30) and (3.32) to

dX(t) = (APX(t) + BP) dt +

K(t)R−1
(

dY (t) − (~C(t)X(t) + ~D(t)) dt
)

(3.33)

and

dP (t) =
(

APP (t) + P (t)AP∗
)

dt +
(

Σ diag(AX(t) + B)Σ∗ − K(t) (Σ0Σ
∗
0)

−1
K(t)∗

)

dt +
(

(

(

X − X(t)
) (

X − X(t)
)∗

H
)

(X)(t) − P (t)H(X)(t)

)∗

×

R−1
(

dY (t) − (~C(t)X(t) + ~D(t))dt
)

(3.34)
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3. A Continuous-time Maximum Likelihood Estimation

Suppose that at each time instant t we approximate the true conditional density
with a Gaussian density with mean Xg(t) and covariance Pg(t), i.e.

p(t,X) ≈ Φ(t,X;Xg(t),Pg(t)). (3.35)

Let us denote for any function φ : [0,Ty] ×<nX 7→ <

φg(X)(t) ,

∫

<nX

φ (t,X)Φ(t,X;Xg(t),Pg(t))dX. (3.36)

Then,

dXg(t) = (APXg(t) + BP) dt +

Kg(t)R
−1

(

dY (t) − (~C(t)Xg(t) + ~D(t)) dt
)

(3.37)

and

dPg(t) =
(

APPg(t) + Pg(t)A
P∗ − Kg(t)R

−1Kg(t)
∗
)

dt +

dIP (t) +
(

Σ diag(AXg(t) + B)Σ∗
)

dt (3.38)

where

dIP (t) =
(

(

X − Xg(t)
) (

X − Xg(t)
)∗

H(X)(t) − Pg(t)Hg(X)(t)
)∗

×

R−1
(

dY (t) − (~C(t)Xg(t) + ~D(t))dt
)

(3.39)

and

Kg(t) = Pg(t)~C∗, (3.40)

The above equations are similar to the continuous-time Kalman filtering equa-
tion, except for the time-varying term

(

Σ diag(AXg(t) + B)Σ∗
)

appearing in (3.38).

Due to the Gaussian assumption (3.35) and by substituting H(x) = ~C(t)x + ~D(t)
into (3.38), we may follow the lines of proof in (Bensoussan (1992), pp. 104), to
simplify the covariance equation (3.38) to

d

dt
Pg(t) = APPg(t) + Pg(t)A

P∗ − Kg(t)R
−1Kg(t)

∗ +

Σ diag(AXg(t) + B)Σ∗. (3.41)

Note that, unlike the Kalman filtering algorithm, equations for the filtered esti-
mate Xg(t) and the conditional covariance Pg(t) are coupled.
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3.4 Nonlinear Filtering of Interest Rate Factors

3.4.4 Numerical Approximation of the Gaussian Filtering

By approximating the stochastic integral (3.37) we obtain systems of ordinary
differential equations for the filtered estimate Xg(t).

d

dt
Xg(t) = (APXg(t) + BP) +

Kg(t)R
−1
(

~yobs(t) − (~C(t)Xg(t) + ~D(t))
)

(3.42)

and

d

dt
Pg(t) = APPg(t) + Pg(t)A

P∗ − Kg(t)R
−1Kg(t)

∗ +

Σ diag(AXg(t) + B)Σ∗. (3.43)

In principle the above ordinary differential equations could be approximated
accurately using numerical methods such as the Runge-Kutta iteration. How-
ever, in the implementation of the filtering equations, we found that it is very
difficult to obtain stable numerical solutions when the noise covariance is small
with standard numerical integration packages, including the more specialized
stiff ODE solvers∗. Unfortunately, for financial data, the magnitude of the noise
is generally very small. For this reason, we developed a specialized numerical
scheme based on backward differences to solve (3.42) and (3.43). In experiments,
we found the numerical scheme to be very stable. The algorithm can be described
as follows.

Let tk = k∆, k = 0, 1, . . . . be discrete time points. Using backward differ-
ences, we approximate (3.42) and (3.43) by

X
∆

g (tk+1) = X
∆

g (tk) + (APX
∆

g (tk+1) + BP) ∆ +

K∆
g (tk+1)R

−1
(

~yobs(tk+1) − (~C(tk+1)X
∆

g (tk+1) + ~D(tk+1))
)

∆

(3.44)

and

P∆
g (tk+1) = P∆

g (tk) +

∆
(

APP∆
g (tk+1) + P∆

g (tk+1)A
P∗ − K∆

g (tk+1)R
−1K∆

g (tk+1)
∗
)

+

∆Σ diag(AX
∆

g (tk+1) + B)Σ∗ (3.45)

∗This is also true for the simpler Gaussian models. However, for Gaussian models one may still be
able to apply steady-state filter as an approximation.
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where
K∆

g (t) = P∆
g (t)~C(t)∗. (3.46)

The difference equation (3.44) can be simplified to

LhsX
∆

g (tk+1) = Rhs (3.47)

where
Lhs = InX×nX

− AP∆ − P∆
g (tk+1)~C(tk+1)

∗R−1 ~C(tk+1)∆,

and

Rhs = X
∆

g (tk) + BP∆ + P∆
g (tk+1)~C(tk+1)

∗R−1
(

~yobs(tk+1) − ~D(tk+1)
)

∆

The covariance term can be further simplified to

0 = −
(

P∆
g (tk) + ∆Σ diag(AX

∆

g (tk+1) + B)Σ∗
)

+

IAP∆
g (tk+1) + P∆

g (tk+1)I
∗
A + P∆

g (tk+1)C
∗
∆R−1C∆P∆

g (tk+1) (3.48)

where

IA =
1

2
InX×nX

− A∆ and

C∆ = ~C(tk+1)
√

∆.

Given X
∆

g (tk) and P∆
g (tk), we will solve for X

∆

g (tk+1) and P∆
g (tk+1) using a

fixed-point iteration. We outline the Gaussian filtering algorithm in Algorithm
(2).
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3.4 Nonlinear Filtering of Interest Rate Factors

Algorithm 2 Gaussian filtering

Given X
∆

g (0) and P∆
g (0), define discrete time steps 0 = t0 < t1 = t0 + ∆ < . . . <

tk = tk−1 + ∆ < . . . < tN = Ty . The filtered estimate Xg(tk) and the conditional

covariance Pg(tk) are approximated by X̂∆
g (tk) and P∆

g (tk) respectively where
for k = 0, . . . ,N − 1 we execute the following steps:

1. Assign x0 := X
∆

g (tk) and p0 := P∆
g (tk).

2. Compute

Lhs = InX×nX
− AP∆ − p0

~C(tk+1)
∗R−1 ~C(tk+1)∆

and

Rhs = X
∆

g (tk) + BP∆ + p0
~C(tk+1)

∗R−1
(

~yobs(tk+1) − ~D(tk+1)
)

∆.

3. Find x1 by solving the linear equation Lhsx1 = Rhs .

4. Find p1 by solving the continuous time Riccati equation

IAp1 + p1I
∗
A + p1C

∗
∆R−1C∆p1 −

(

P̂∆
g (tk) + ∆Σ diag(Ax1 + B)Σ∗

)

= 0

5. If ‖p1 − p0‖2 + ‖x1 − x0‖2 > ε, assign p0 := p1 and x0 := x1 and return to
step (2).

6. Assign X
∆

g (tk+1) = x1 and P∆
g (tk+1) = p1.
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Parameter Estimation of Cox,

Ingersol and Ross Model 4
4.1 Introduction

In this chapter we will investigate the performance of the continuous-time max-
imum likelihood estimation method which is discussed in the previous chapter.
We will work exclusively with the Cox-Ingersol-Ross (CIR hereafter) model of the
interest rate. Using simulated data, we will first investigate the performance of
the Gaussian filter, comparing it to the exact nonlinear filter. Furthermore, using
both filtering algorithms, we will investigate the estimation performance of the
Itô and Robust likelihood discussed in the previous chapter. We also apply the
estimation method to estimate the CIR model on the the US and European term
structures.

4.2 Model Setup

4.2.1 Cox-Ingersol-Ross Model

The Cox-Ingersol-Ross interest rate model is a one-factor model given by

dr(t) = κ(θ − r(t)) dt + σ
√

r(t) dW (t) (4.1)

for which, the corresponding bond yield with time to maturity τ is

y(t, t + τ) = C(τ) r(t) + D(τ) (4.2)

where

C(τ) =
1

τ

2(eγτ − 1)

2γ + (κ + λ + γ)(eγτ − 1)
, (4.3)

D(τ) =
2κθ

σ2τ
log

(

2γ exp(τ(κ + λ + γ)/2)

2γ + (κ + λ + γ)(eγτ − 1)

)

, (4.4)

γ =
√

(κ + λ)2 + 2σ2, and (4.5)

and λ is a constant market price of risk parameter.
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4. Parameter Estimation of Cox, Ingersol and Ross Model

4.2.2 Measurement Model

In order to apply the continuous maximum likelihood estimation method, we
assume that at each time instant t, we have an observation vector ~yobs(t). The
integrated observation

Y (t) =

∫ t

0

~yobs(s)ds (4.6)

satisfies the following SDE:

dY (t) = (~C(t)X(t) + ~D(t))dt + dW0(t). (4.7)

where W0(t) is a vector Brownian motion with a known covariance matrix R

which is independent to W P(t).
Let yobs(t, t + τ) be the observed value of yields y(t, t + τ). For parameter

estimation, we will use the vector containing observed yields with ny number of
maturities i.e.

~yobs(t) =









yobs
s (t, t + τ1)

...

yobs
s (t, t + τny

)









(4.8)

Thus, for the CIR model, the matrices ~C(t) and ~D(t) are defined as

~C(t) =









C(τ1)
...

C(τny
)









, ~D(t) =









D(τ1)
...

D(τny
)









(4.9)

4.3 Maximum Likelihood Estimation

4.3.1 Likelihood Functional

The unknown parameter Θ driving both the state and observation equations are
estimated by maximizing the robust likelihood functional

L(Θ) = R−1

∫ Ty

0

{

〈~C(t) r(t) + ~D(t), ~yobs(t)〉 − 1

2
‖~C(t) r(t) + ~D(t)‖2

}

dt

−R−1 1

2

∫ Ty

0

~C(t)P (t)~C(t)∗ dt (4.10)

Using simulated data, we will compare the performance of the robust likelihood
functional with the Itô likelihood

L(Θ) = R−1

∫ Ty

0

{

〈~C(t) r(t) + ~D(t), ~yobs(t)〉 − 1

2
‖~C(t) r(t) + ~D(t)‖2

}

dt

(4.11)
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4.3 Maximum Likelihood Estimation

4.3.2 Nonlinear Filtering

In order to compute the nonlinear filter, we are going to follow the splitting-up
algorithm described in Section 3.4.2. Given the initial condition q(0, r) = q∆(0, r),
define discrete time steps 0 = t0 < t1 = t0 + ∆ < . . . < tk = tk−1 + ∆ <

. . . < tN = Ty . The unnormalized conditional density q(tk, r) is approximated by
q∆(tk, r) where for k = 0, . . . ,N − 1.

4.3.2.1 The Prediction Step

At time tk in the prediction step of the splitting-up method, we will need to solve

∂

∂t
f (t, r) = − ∂

∂r
(κ(θ − r) f (t, r)) − 1

2

∂2

∂r2

(

σ2r f (t, r)
)

= κf (t, r) − (κ(θ − r) − σ2)
∂

∂r
f (t, r) +

1

2
σ2 r

∂2

∂r2
f (t, r)

(4.12)

between times tk and tk+1, given the initial condition f(tk, r) = q∆ (tk, r). Here
we will use the Crank-Nicholson finite difference method to approximate the so-
lution of (4.12).

Let us define a computation grid T = {t̃0 = tk, t̃1 = t̃0 + ∆t, . . . , t̃M = tk+1}
and R = {r0 = 0, r1 = r0 + ∆r, . . . , rN = rN−1 + ∆r} . Let us denote fi, j =
f(t̃i, rj). The finite difference approximation of the r.h.s of (4.12) is given by:

Dfi, j = κ fi, j − gj
qi+1, j − qi, j

∆r
+

1

2
hj

qi+1, j − 2qi, j + qi, j−1

∆r2
, (4.13)

gj = (κ(θ − rj) − σ2), (4.14)

hj = σ2rj . (4.15)

Thus, the Cranks-Nicholson approximation of (4.12) is given by:

fi+1, j − fi, j

∆t
=

1

2
(Dfi+1, j + Dfi, j) (4.16)

Let us denote:

aj =
1

2

hj

∆r2
(4.17)

bj = (κ +
gj

∆r
− hj

∆r2
) (4.18)

cj = (− gj

∆r
+

1

2

hj

∆r2
) (4.19)
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4. Parameter Estimation of Cox, Ingersol and Ross Model

By rearranging (4.16) we obtain the following:

(−1

2
aj∆t) fi+1, j−1 + (1 − 1

2
bj∆t) fi+1, j + (−1

2
cj∆t) fi+1, j−1

= (
1

2
aj∆t) fi, j−1 + (1 +

1

2
bj∆t) fi, j + (

1

2
cj∆t) fi, j−1 (4.20)

For large enough rN , we may approximate the boundary condition by setting
fi, 0 = fi, N = 0 at every time-step t̃i, i = 1, . . .M . This will allow us to write
(4.20) as:

A ~fi+1 = B ~fi (4.21)

where

A = ∆t













1
∆t − 1

2b1 − 1
2c1 0 0 · · · 0

− 1
2a2

1
∆t − 1

2b2 − 1
2c2 0 · · · 0

...
...

...

0 · · · 0 0 − 1
2aN

1
∆t − 1

2bN













(4.22)

B = ∆t













1
∆t + 1

2b1
1
2c1 0 0 · · · 0

1
2a2

1
∆t + 1

2b2
1
2c2 0 · · · 0

...
...

...

0 · · · 0 0 1
2aN

1
∆t + 1

2bN













(4.23)

and

~fi =









fi, 0

...

fi, N









, i = 1, . . . ,M.

with the initial condition

~f0 =









q∆ (tk, r0)
...

q∆ (tk, rN )









.

After iterating (4.21) M times, the solution of (4.12) at time tk+1 is given by

f (tk+1, rk) ≈ fM , k

for k = 1, . . . ,N .
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4.3.2.2 The Correction Step

At the correction step, for l = 0, . . . ,M we set

q∆ (tk+1, rl) := ck+1 f (tk+1, rl) Φ∆ (tk+1, rl) (4.24)

where ck+1 is a normalizing factor so that ck+1

∑M−1
l=0 q∆ (tk+1, rl) ∆r = 1 and

log Φ∆ (t, r) = R−1

∫ tk+1

tk

〈H (t, r) , ~yobs(t)〉 − 1

2
‖H (t, r)‖2

dt,

H(t, r) = ~C(t)r + ~D(t).

4.3.3 Gaussian Filtering

The Gaussian approximate filter is given by the following systems of ODE:

d

dt
rg(t) = κ(θ − rg(t)) + Pg(t)~C(t)∗R−1

(

~yobs(t) − (~C(t)rg(t) + ~D(t))
)

and

d

dt
Pg(t) = −2κPg(t) − Pg(t)

2 ~C(t)∗R−1 ~C(t) + σ2rg(t).

4.4 Simulated Data

In this section we will investigate the performance of the algorithms presented in
the earlier sections. First of all, we compare the performance of the Gaussian filter
to the exact nonlinear filter. Secondly, we will apply the maximum likelihood
approach and compare the estimation performance of the Itô likelihood and the
robust likelihood using both the exact nonlinear filter and the Gaussian filter. For
these studies we model the interest rate according to the one-factor Cox-Ingersol-
Ross model.

We will consider two cases where the covariance of the measurement error is
R = σ2

0I9×9 where σ0 ∈ {10 bp, 0.1 bp}. We generated 100 paths of the interest
rate which resulted in 100 × 2 data sets, each containing 365 daily noisy bond
yields with the following time to maturities: 3 months, 6 months, 1, 2, 3, 5, 7,
10 and 20 years. The parameters for the Cox-Ingersol-Ross model, taken from
(de Jong and Santa-Clara (1999)), are listed in Table (4.1). The initial condition
is r(0) = 0.06. For filtering we assume a Gaussian initial condition with mean
r(0) = 0.07 and variance P (0) = 0.01.
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4. Parameter Estimation of Cox, Ingersol and Ross Model

κ θ σ λ

0.1862 0.0654 0.0481 -0.0741

Table 4.1: Parameters for the Cox-Ingersol-Ross model.

Figure 4.1: Numerical solution of the conditional density for σ0 = 10 bp.

4.4.1 Comparison of Filtering Performance

An example of the conditional density for σ0 = 10 basis points is shown in Figure
(4.1). For a single path, we plot the comparison of the filtered estimates obtained
from the nonlinear filter and the approximate Gaussian filter in Figures (4.2) and
(4.3). As expected, the filtered estimates given by the Gaussian approximation do
not perform as well as the those obtained from the exact nonlinear filter. How-
ever, the difference between the two is minimal. This conclusion is further con-
firmed by the root mean squared errors (RMSE) between exact values and the
filtered estimates given in Figures (4.4) and (4.5).
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4.4 Simulated Data
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Figure 4.4: RMSE of filtered estimate. Nonlinear filter vs Gaussian filter for σ0 =
10 bp.
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Figure 4.5: RMSE of filtered estimate. Nonlinear filter vs Gaussian filter for σ0 =
0.1 bp.
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4. Parameter Estimation of Cox, Ingersol and Ross Model

4.4.2 Comparison of Likelihood Functionals

Although the Gaussian filter performs very well for the simulated data, we would
like to know how both filtering algorithms perform in estimating parameters.
Furthermore, we ask ourselves whether there are substantial differences between
parameter estimates obtained by the Itô likelihood and the robust likelihood. In
order to answer these questions, we estimated the parameters of all 200 data sets.
For parameter estimation, we have taken true parameter values as starting points
for the optimisation procedure. The results are presented in tables (4.2) and (4.3).
These tables report the mean and standard deviation of the differences between
the estimated parameters and the corresponding true parameter values. We ap-
ply Wilcoxon signed rank test to test the hypothesis that the median of the differ-
ences are zero. We have chosen this particular statistical test due to questionable
normality of the resulting parameter estimates. We also included the results in
both tables, indicating whether the null hypothesis (the median of the differences
is zero) can be rejected or cannot be rejected at 95% confidence level by 1 and 0
respectively. The results vary across the table. In general, the results suggest that
the parameter estimates are biased and that the bias decreases for smaller noise
covariance.

In addition, we also apply signed rank test to the parameter estimates ob-
tained from the robust likelihood and the Itô likelihood. We would like to know
how significant is the difference between parameter estimates obtained using
these two likelihoods for each filtering algorithms. The results obtained from
paired signed rank test are given in Table (4.4). Again we indicate whether the
null hypothesis (the median of the differences is zero) can be rejected or can-
not be rejected at 95% confidence level by 1 and 0 respectively. The results vary
across the table. For the smaller noise covariance, using either the nonlinear or
Gaussian filter, the difference between parameter estimates obtained using the
Itô likelihood and the robust likelihood is not significant. This result is not very
surprising because for the smaller noise covariance, the conditional covariance
of the filtered estimates that determine the correction factor in the robust likeli-
hood are very small. For the larger noise covariance, using either the nonlinear or
Gaussian filter, the difference between the resulting parameter estimates is signif-
icant. On the other hand, from Table (4.3), we see parameter estimates obtained
by robust likelihood is less biased than those obtained from the Itô likelihood.
These led us to conclude the robust likelihood is better than the Itô likelihood.

Furthermore, we also apply signed rank test to the parameter estimates ob-
tained using the nonlinear filter and the Gaussian filter. We would like to know
how significant is the difference between parameter estimates obtained using the
nonlinear filter and the Gaussian filter. Given the previous conclusion we specif-
ically would like to know if the difference is significant when we use the robust
likelihood. The results obtained from paired signed rank test are given in Table
(4.5). Again we indicate whether the null hypothesis (the median of the differ-
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4.5 Fama-Bliss Data

Parameter Nonlinear Filter

robust likelihood Itô likelihood

Mean Std. Dev. Mean Std. Dev

κ 0.001644 0.002497 1 0.001797 0.003025 1

θ -0.000043 0.000302 0 -0.000094 0.000702 1

σ -0.000256 0.002170 0 -0.000284 0.003254 0

λ -0.000278 0.000529 1 -0.000438 0.001909 1

Parameter Gaussian Filter

robust likelihood Itô likelihood

Mean Std.Dev Mean Std. Dev.

κ 0.001706 0.003623 1 0.000225 0.000605 1

θ -0.000015 0.001224 0 -0.000215 0.000222 1

σ -0.016366 0.001385 1 0.003447 0.001002 1

λ 0.002297 0.003486 1 -0.001264 0.000726 1

Table 4.2: Monte Carlo results for the Cox-Ingersol-Ross model, σ0 = 0.1 bp.
This table reports the mean and standard deviation of the errors between the true
parameter values and parameter estimates.

ences is zero) can be rejected or cannot be rejected at 95% confidence level by
1 and 0 respectively. For the robust likelihood, the results in the first and third
columns suggest that the difference between the mean reversion parameter esti-
mates obtained using the nonlinear filter and the Gaussian filter is not significant
while the difference between the volatility parameter estimates using the nonlin-
ear filter and the Gaussian filter is significant.

4.5 Fama-Bliss Data

We apply the continuous-time maximum likelihood method in estimating the
CIR model using the Fama-Bliss dataset. The dataset contains monthly bond
yields with maturities 1,2,...,5 years from April 1964 to December 1997. Figure
(4.6) plots the time series. We assume that the noise covariance is (0.1 bp)2I5×5.
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4. Parameter Estimation of Cox, Ingersol and Ross Model

Parameter Nonlinear Filter

robust likelihood Itô likelihood

Mean Std. Dev. Mean Std. Dev

κ -0.041423 0.034861 1 -0.085835 0.052489 1

θ 0.021074 0.025265 1 0.083220 0.070708 1

σ 0.076237 0.007908 1 0.092651 0.009120 1

λ 0.008500 0.037459 0 0.043658 0.056159 1

Parameter Gaussian Filter

robust likelihood Itô likelihood

Mean Std. Dev. Mean Std. Dev

κ -0.017261 0.070081 1 -0.070854 0.039728 1

θ 0.021201 0.043866 1 0.051936 0.048292 1

σ 0.035030 0.005097 1 0.108377 0.009591 1

λ 0.005600 0.067236 0 0.022300 0.041628 1

Table 4.3: Monte Carlo results for the Cox-Ingersol-Ross model, σ0 = 10 bp. This
table reports the mean and standard deviation of the errors between the true pa-
rameter values and parameter estimates.

σ0 = 0.1 bp σ0 = 10 bp

Nonlinear filter Gaussian filter Nonlinear filter Gaussian filter

κ 0 0 1 1

θ 0 0 1 1

σ 0 0 1 1

λ 1 1 1 1

Table 4.4: Wilcoxon signed rank test for zero median between estimates obtained
using the robust likelihood and the Itô likelihood. The 0 entry indicates that the
null hypothesis (median is zero) cannot be rejected at 95% significance level. 1
indicates that the null hypothesis can be rejected at 95% significance level.
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4.5 Fama-Bliss Data

σ0 = 0.1 bp σ0 = 10 bp

robust likelihood Itô likelihood robust likelihood Itô likelihood

κ 0 1 1 1

θ 0 1 0 1

σ 1 1 1 1

λ 1 1 0 1

Table 4.5: Wilcoxon signed rank test for zero median between estimates obtained
using the nonlinear and Gaussian filters. The 0 entry indicates that the null hy-
pothesis (median is zero) cannot be rejected at 95% significance level. 1 indicates
that the null hypothesis can be rejected at 95% significance level.
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Figure 4.6: Monthly Fama-Bliss data from April 1964 to December 1997.
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4. Parameter Estimation of Cox, Ingersol and Ross Model

Parameter estimates are given in Table (4.6), marked CTML. The result ob-
tained by Duan and Simonato (1999) with quasi- maximum likelihood (QML)
and De Rossi (2005) with particle filtering (PF) are also given for comparison.

Method κ̂ θ̂ σ̂ λ̂

CTML 0.125 0.0479 0.0292 -0.0832

QML 0.225 0.0613 0.0700 -0.1112

PF 0.175 0.0592 0.0683 -0.0961

Table 4.6: CIR parameter estimated from Fama-Bliss dataset starting April 1964
to December 1997. Parameter estimates on the second and third rows are those
obtained by Duan and Simonato (1999) and De Rossi (2004) respectively.

4.6 Conclusions

Using simulated data, we have investigated the performance between the robust
likelihood functional and the Itô likelihood functional in estimating parameters
of the one-factor Cox-Ingersol-Ross model. Results suggest that the robust likeli-
hood performs better than the Itô likelihood. The difference is more pronounced
when the measurement errors are relatively large. In general, parameter esti-
mates obtained using the continuous-time MLE are reasonably close to the actual
value, suggesting that the continuous-time maximum likelihood is a feasible al-
ternative for estimating the exponential-affine term structure models. However,
its application is severely limited by extended computational time required in
computing the likelihood due to the time consuming nonlinear filtering proce-
dure. For this reason, we proposed an approximate filter by approximating the
exact conditional density function by a Gaussian density function. We have per-
formed a comparison between the approximate filter and the exact nonlinear fil-
ter. The results suggest that the filtered estimates obtained using the approximate
filter are only slightly less accurate than those obtained using the exact nonlinear
filter. Furthermore, we did not observe any adverse effect of substituting the ex-
act nonlinear filter for the approximate filter in the estimation procedure.

In the following chapter, we will apply the continuous-time maximum like-
lihood method in fitting the Euro swap rates and the Euribor futures to 3-factor
interest rate models.
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A Comparison of Three-factor

Models in the European Fixed

Income Market 5
5.1 Introduction

In this chapter we will apply the continuous-time maximum likelihood method
described in the previous chapter to fit two 3-factor interest rate models to the the
Euro swap rates and the Euribor futures prices.

5.2 Interest Rate Models

5.2.1 Balduzzi-Das-Foresi-Sundaram Model

The Balduzzi, Das, Foresi and Sundaram (BDFS, 1996) model belongs to the class
of three-factor exponential affine models. It extends the well-known Vasicek
model by assuming that both the mean reversion and the volatility are stochastic.
The mean reversion level itself is modeled as a mean reverting Gaussian process.
To ensure positivity of the instantaneous variance, it is modeled as a square-root
process. Under the risk neutral measure, the interest rates factors satisfy the fol-
lowing dynamics:

dr(t) = κ (θ(t) − r(t)) dt +
√

v(t) dW Q
1 (t)

dθ(t) = ν
(

θ̄ − θ(t) dt + ζ dW Q
2 (t)

dv(t) = µ (v̄ − v(t)) dt + η
√

vt dW Q
3 (t) (5.1)

while the equivalent real world dynamics is given by:

dr(t) = (κ (θ(t) − r(t)) + λ1v(t)) dt +
√

v(t) dW P
1 (t)

dθ(t) =
(

ν
(

θ̄ − θ(t) + λ2ζ dt + ζ dW P
2 (t)

dv(t) = (µ (v̄ − v(t)) + λ3ηvt) dt + η
√

vt dW P
3 (t) (5.2)

The mean reverting parameters θ̄ and v̄ are both constrained to be positive values.
To ensure positivity of the volatility factor v(t) for all t ≥ 0, the Feller condition
2µv̄ > η2 is added. Volatility parameters ζ and η are both constrained to be
positive values. For stability, κ, ν, µ and µ + λ3η are assumed to be positive.

47



5. A Comparison of Three-factor Models in the European Fixed Income Market

5.2.2 Chen Model

Unlike the BDFS, Chen (Chen, 1996) modeled the mean reversion level as a square
root model restricting it to positive values. Under the risk neutral measure, the
interest rate model satisfies:

dr(t) = κ (θ(t) − r(t)) dt +
√

v(t) dW Q
1 (t)

dθ(t) = ν
(

θ̄ − θ(t) dt + ζ
√

θ(t) dW Q
2 (t)

dv(t) = µ (v̄ − v(t)) dt + η
√

v(t) dW Q
3 (t) (5.3)

while the equivalent real world dynamics is given by:

dr(t) = (κ (θ(t) − r(t)) + λ1v(t)) dt +
√

v(t) dW P
1 (t)

dθ(t) =
(

ν
(

θ̄ − θ(t) + λ2ζθ(t) dt + ζ
√

θ(t) dW P
2 (t)

dv(t) = (µ (v̄ − v(t)) + λ3ηv(t)) dt + η
√

v(t) dW P
3 (t) (5.4)

The mean reverting parameters θ̄ and v̄ are both constrained to be positive values.
To ensure positivity of both the mean reversion θ(t) and the volatility v(t), the
Feller condition 2νθ̄ > ζ2 and 2µv̄ > η2 are added. Volatility parameters ζ and
η are both constrained to be positive values. For stability, κ, ν, µ, ν − λ2ζ and
µ + λ3η are assumed to be positive.

5.3 Measurement Model

In order to apply the continuous maximum likelihood estimation method, we
will first parameterize both BDFS and Chen models into our standard matrix
notation of the exponential-affine model:

dX(t) = (AX(t) + B)dt + Σ diag(AX(t) + B)
1
2 dW Q(t) (5.5)

where X(t) = [r(t) θ(t) v(t)]∗. Under the real-world measure, the dynamics of
the interest rate factors is given by

dX(t) = (APX(t) + BP)dt + Σ diag(AX(t) + B)
1
2 dW P(t) (5.6)

The constant matrices A, B, AP, BP, Σ, A and B for BDFS and Chen models are
given in Appendix A. Furthermore, we assume that at each time instant t, we
have an observation vector ~yobs(t). The integrated observation

Y (t) =

∫ t

0

~yobs(s)ds (5.7)
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satisfies the following SDE:

dY (t) = (~C(t)X(t) + ~D(t))dt + dW0(t). (5.8)

where W0(t) is a vector Brownian motion with a known covariance matrix R

which is independent of W P(t). We will later specify the vector of observations

~yobs(t), and time-varying matrices ~C(t) and ~D(t) separately for each case study
that we are going to consider in this chapter.

The unknown parameter Θ driving both the state and observation equations
is estimated by maximizing the robust log-likelihood functional

L(Θ) = R−1

∫ Ty

0

{

〈~C(t) Xg(t) + ~D(t), ~yobs(t)〉 − 1

2
‖~C(t) Xg(t) + ~D(t)‖2

}

dt

−1

2

∫ Ty

0

~C(t)Pg(t)~C(t)∗ dt (5.9)

where
Kg(t) = Pg(t)

∗, (5.10)

d

dt
Xg(t) = (APXg(t) + BP) +

Kg(t)R
−1

(

~yobs(t) − (~C(t)Xg(t) + ~D(t))
)

(5.11)

and

d

dt
Pg(t) = APPg(t) + Pg(t)A

P∗ − Kg(t)R
−1Kg(t)

∗ +

Σ diag(AXg(t) + B)Σ∗. (5.12)

5.4 The Euro Swap Rates

5.4.1 The Euro Swap Markets

An interest rate swap is a contract between two parties to exchange streams of
interest rates payments. Typically, one stream of payments is based on a fixed
rate of interest while the other stream is based on a floating rate interest. Only
the net cash flows are paid; the notional principal on which the interest rate pay-
ments are calculated is not exchanged. In terms of notional principal outstand-
ing, over-the-counter markets for Euro- and US dollar-denominated interest rate
derivatives are the largest financial markets in the world. The notional stock of
Euro-denominated interest rate swaps and forwards totalled 26.3 trillion at the
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end June 2002. The US dollar-denominated contracts were slightly smaller at 26.2
trillion.

The pricing of interest rate swaps in general depends on the interest rate used
for the floating rate leg of the contract. For Euro swaps, the choice of the floating
rate tends to depend on the contract’s maturity. For short dated swaps, EONIA
(Euro OverNight Index Average) is the most common basis for the floating rate
leg. For longer-dated swaps, that we will use in our study, Euribor (European
Interbank Offered Rate) remains the key reference rate.

5.4.2 Data Description

We downloaded cross-sectional data consisting of daily Euro swap rates that are
available from the website of the central bank of Austria. The Euro swap rates
are calculated daily at 11:00 a.m. (Frankfurt time) by an independent institution
(International Swap and Derivatives Association, Inc. ISDA) by averaging the
interest rates quoted by major European banks. 16 banks indicate the interbank
interest rate at which those banks would buy or sell a swap of a given matu-
rity and capital amount. The swap rate quotes are referenced to the six-month
Euribor, except for one-year swaps, which are based on the three-month Euribor.
In addition, we also downloaded Euribor rates from the same source.

Our dataset contains the 1 month, 2 months, ..., 12 months Euribor rates and 1
year, 2 years,..., 10 years, 12 years, 15 years and 20 years Euro swap rates between
2 January 2002 and 30 May 2005. We divided the dataset into two parts. The
first part is the calibration dataset consisting of a subset from 2 January 2002 up
to 20 December 2004. This dataset will be used in the parameter estimation of
the interest rate models. The remaining data between 2 January 2005 and 30
May 2005, the validation dataset, will be used to asses the performance and the
stability of the resulting parameter estimates.

In order to estimate the parameters of BDFS and Chen interest rate models,
we will use the continuous-time maximum likelihood method described in the
earlier chapter. Unfortunately, under the exponential-affine framework, swap
rates cannot be expressed as an affine function of the interest rate factors. Thus,
we will need to transform the swap rate into a quantity that can be fitted into the
our parameter estimation framework. Here we will use the zero coupon bond
yields implied from the Euribor rates and the Euro swap rates.

5.4.3 The Implied Term Structure

We have extracted zero coupon bond yields from the Euribor and swap rates
following the standard bootstrap procedure (see e.g. James and Webber (2001)).
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5.4 The Euro Swap Rates

Figure 5.1: The Euro swap rates from 2 January 2002 until 30 May 2005

The procedure can be described as follows. First, we will compute the Euribor-
implied zero coupon bond price Be(t, t + τ) for τ ≤ 1 by using the following
equation:

Be (t, t + τ) =
1

1 + re (t, t + τ) αe (t, t + τ)
(5.13)

where re (t, t + τ) denotes the time t value of the 12τ months Euribor rates, and
αe(t1, t2) denotes the day-count function in a year unit which correspond to the
actual/360 day-count convention.

In order to obtain zero coupon bond yields from the swap rates, we will need
to approximate the swap rates for τ = 1

2 and τ = 1. We need to do this because the
day-count convention for calculating the swap rates is different than day-count
convention for calculating Euribor rates. Using Be(t, t + 0.5) and Be(t, t + 1) that
have been obtained earlier, we define the swap rates as

rs(t, t + 0.5) =
1 − Be(t, t + 0.5)

αs(t, t + 0.5)Be(t, t + 0.5)
(5.14)

and

rs(t, t + 1) =
1 − Be(t, t + 1)

αs(t, t + 0.5)Be(t, t + 0.5) + αs(t + 0.5, t + 1)Be(t, t + 1)
(5.15)

where αs(t1, t2) denotes the day-count function in a year unit which correspond
to the 30/360 day-count convention.
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Let τj = 1
2j, j = 0, 1, . . .. After computing rs(t, t + 0.5) and rs(t, t + 1), we

will we need to approximate the swap rates rs (t, τ) at τ ∈ {τ3, τ4, . . . τ40} by in-
terpolating the available swap rates. Given interpolated swap rates, the discount
function Bs(t, t + τj), j = 1, . . . , 40 can be recursively computed by:

Bs (t, t + τj) =
1 − rs (t, τj)

∑j−1
i=1 αs (t + τi−1, t + τi) Bs (t, t + τi)

1 + rs (t, τj) αs (t + τj−1, t + τj)
(5.16)

and finally, the swap implied-yield ys (t, t + τ) is given by

ys (t, t + τ) = − 1

α(t, t + τ)
lnBs (t, t + τ) . (5.17)

5.4.4 Measurement Equation

Let yobs
s (t, t+ τ) be the observed value of the swap-implied yields ys(t, t+ τ). For

parameter estimation, we will use the vector containing observed swap-implied
yields with ny = 40 maturities ranging from 0.5 up to 20 years, i.e.

~yobs(t) =









yobs
s (t, t + τ1)

...

yobs
s (t, t + τny

)









(5.18)

where τj = 1
2j, j = 1, . . . , 40. Thus, in this case, the matrices ~C(t) and ~D(t) are

defined as

~C(t) =









− 1
τ1(t)

C(τ1)
∗

...

− 1
τny (t)C(τny

)∗









, ~D(t) =









− 1
τ1(t)

D(τ1)
...

− 1
τny (t)D(τny

)









(5.19)

where

d

dτ
Cb(τ) = −g1 + A∗Cb(τ) +

1

2

nX
∑

k=1

[(Cb(τ)∗Σ)k]
2 A∗

k, .

d

dτ
Db(τ) = −g0 + B∗Cb(τ) +

1

2

nX
∑

k=1

[(Cb(τ)∗Σ)k]
2 Bk (5.20)

with boundary conditions C(0) = ~0 and D(0) = 0.

52



5.4 The Euro Swap Rates

Parameter Model

BDFS Chen

κ 1.07327 0.31727

ν 0.03638 0.78535

θ̄ 0.09082 0.06131

ζ 0.01081 0.01046

µ 0.71679 0.00152

v̄ 0.00014 0.00266

η 0.01423 0.00287

λ1 0.00002 0.00914

λ2 0.00186 -0.00230

λ3 0.00052 0.00292

Table 5.1: Parameter estimates of the Euro swap rates.

5.4.5 Estimation Results

We estimated the parameters of BDFS and Chen models by maximizing the likeli-

hood functional (5.9) given the vector of observations (5.18) and the matrices ~C(t)

and ~D(t) in (5.19) . The noise covariance matrix R is assumed to be (0.1 bp)2I40×40.
The parameter estimates are reported in Table (5.1). The fitting performance for
the calibration data set and the validation data set are given in Figure (5.2) and
(5.3) respectively. The performance of BDFS and Chen models are comparable for
the calibration data set with a hint of better fitting provided by the Chen model.
With the validation data set, the results are mixed. BDFS seems to capture the
short end better than the long end. On the contrary, Chen model seems to cap-
ture the long end of the swap rate curve better than the short end. In general,
both models fits the euro swap rate curve reasonably well.
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Figure 5.2: Mean and standard errors between the fitted and observed Euro swap
rates from 2 January 2002 until 30 December 2004 (calibration dataset).
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Figure 5.3: Mean and standard errors between the fitted and observed Euro swap
rates from 2 January 2005 until 30 May 2005 (validation dataset).
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BDFS Chen

Figure 5.4: Errors between the fitted and observed Euro swap rates from 2 Jan-
uary 2002 until 30 May 2005.

5.5 The Euribor Futures

5.5.1 The Euribor Futures Markets

A futures contract is a binding agreement between two parties to exchange an
asset for a fixed price on a specified final settlement date T in the future. The
futures price, which is the price at which a given futures contract is entered into, is
determined by the usual demand and supply. The futures prices are settled daily
through the procedure called marking to market. A futures contract is worth
zero when entered into; however, each investor is required to deposit funds into
a margin account. The amount that should be deposited when the contract is
entered into is known as the initial margin. At the end of each trading day, the
balance of the investor’s margin account is adjusted in a way that reflects daily
movements of the futures prices.

The Euribor futures is a futures contract with a Euribor deposit as the under-
lying asset. Since 1 January 1999, the Euribor has been used as the European
money market reference rate for the unsecured market. Unlike Euro swap con-
tracts, Euribor futures are liquidly traded in major exchanges. The 1-month and
3-month Euribor futures have been traded on the derivatives market since De-
cember 1998. The 3-month Euribor future is a contract to engage in a three month
loan or deposit a face value of 1.000.000 Euro. The futures price is quoted on
a daily basis for the delivery months March, June, September and December, in
each case for the 3rd Wednesday of that month. The last trading day of a futures
contract is always two exchange trading days prior to the relevant settlement day.
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5.5.2 Data Description

Our data consists of quoted Euribor futures prices corresponding to five near-
est delivery months. The data set contains Euribor futures prices traded in the
Euronext-Liffe between 2 January 2004 to 30 May 2005 downloaded from Econ-
stats. We divided the data into two subsets. The calibration set containing futures
prices from 2 January 2004 until 30 December 2004, and the validation set which
contains the remaining data up to 30 May 2005. In order to apply the maximum
likelihood method described in the earlier chapter, we cannot use the quoted fu-
tures prices directly because under the exponential-affine framework the futures
price cannot be expressed as an affine function of the interest rate factors. We
need a quantity that has an affine relation with the interest rate factors. This will
be derived below.

One notable feature of the Euribor futures is that the actual margin adjustment
is not based on the quoted futures price but based on transformed prices which is
termed actual futures price. At the delivery of the contract, T , the quoted futures
price is defined in terms of the prevailing three-month Euribor rate according to
the relation

Fq (T ,T ) = 1 − re(T ,T + 0.25) (5.21)

where re(t, t + τ) is the time t value of the 12τ months Euribor rate. Margin
adjustment is given by the actual futures price Fa(t,T ) which is defined as:

Fa (t,T ) = 1 − 0.25 (1 − Fq (t,T )) . (5.22)

This implies, at the delivery time T , the final settlement is

Fa (T ,T ) = 1 − 0.25 (1 − (1 − re(T ,T + 0.25))) . (5.23)

By substituting

re(T ,T + 0.25) =
1

0.25

(

1

B(T ,T + 0.25)
− 1

)

(5.24)

we obtain

Fa (T ,T ) = 2 − 1

B(T ,T + 0.25)
. (5.25)

Thus, the actual futures price at time t is given by

Fa (t,T ) = 2 − E
Q

[

1

B(T ,T + 0.25)
F(t)

]

. (5.26)
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where F(t) is the σ-algebra generated by the interest rate factors {X(s), 0 ≤ s ≤ t}.
Thus, let us define

yf (t, t + τ(t)) = log(2 − Fa(t, t + τ(t))) = log E
Q

[

1

B(T ,T + 0.25)
F(t)

]

. (5.27)

where τ(t) denotes the remaining time to delivery. In the exponential affine
framework, yf (t, t + τ(t)) can be written as affine function of the interest rate
factors. Thus, a candidate for the observation in our estimation framework.

5.5.3 Measurement Equation

The quantity yf (t, t + τ(t)) can be further simplified to

yf (t, t + τ(t)) = log E
Q

[

e−Cb(0.25)X(T )−Db(0.25) F(t)
]

(5.28)

where C(τ) and D(τ) satisfy

d

dτ
Cb(τ) = −g1 + A∗Cb(τ) +

1

2

nX
∑

k=1

[(Cb(τ)∗Σ)k]
2 A∗

k, .

d

dτ
Db(τ) = −g0 + B∗Cb(τ) +

1

2

nX
∑

k=1

[(Cb(τ)∗Σ)k]
2 Bk (5.29)

with boundary conditions C(0) = ~0 and D(0) = 0. Thus,

yf (t, t + τ(t)) = Cf (τ(t)) X(t) + Df (τ(t)) (5.30)

where

d

dτ
Cf (τ) = A∗Cf (τ) +

1

2

nX
∑

k=1

[(Cf (τ)∗Σ)k]
2 A∗

k, .

d

dτ
Df (τ) = B∗Cf (τ) +

1

2

nX
∑

k=1

[(Cf (τ)∗Σ)k]
2 Bk (5.31)

with boundary conditions Cf (0) = −Cb(0.25) and Df (0) = −Db(0.25).
Given a set of delivery times

{

T1, . . . ,Tny

}

, ny = 5, let τj(t) = Tj − t, j = 1,
. . . ,ny be the remaining times to delivery of the futures. At each time instant t we
construct an observation vector containing futures prices and the yield implied
from 3 months Euribor. Let ye(t, t + 0.25) be the yield implied from 3-months
Euribor,

ye (t, t + 0.25) = − 1

αe(t, t + 0.25)
log

1

1 + re (t, t + 0.25) αe (t, t + 0.25)
.
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The vector of observations is given by

~yobs(t) =













yobs
f (t, t + τ1(t))

...

yobs
f (t, t + τny

(t))

yobs
e (t, t + τe)













(5.32)

where yobs
f (t, t + τ) and yobs

e (t, t + 0.25) denote the observed values of yf (t, t + τ)

and ye(t, t + 0.25) respectively. Thus, the matrices ~C(t) and ~D(t) are defined as

~C(t) =













Cf (τ1(t))
∗

...

Cf (τny
(t))∗

Cb(0.25)













, ~D(t) =













Df (τ1(t))
...

Df (τny
(t))

Db(0.25)













. (5.33)

5.5.4 Estimation Results

We estimated the parameters of BDFS and Chen models by maximizing the likeli-

hood functional (5.9) given the vector of observations (5.32) and the matrices ~C(t)

and ~D(t) in (5.33) . The noise covariance matrix R is assumed to be (0.1 bp)2I6×6.
The parameter estimates are reported in Table (5.2). Fitting performance for the
calibration data set and the validation data set are given in Figures (5.7) and (5.8)
respectively. As seen from the figure, the fitting performance of both models are
comparable. In Figure (5.6), both models are able to capture the Euribor futures
prices with excellent accuracy. Furthermore, the models are able to track the un-
derlying 3-month Euribor reasonably well as depicted in Figure (5.10).

5.6 Conclusions

In this chapter we have estimated 3-factor exponential affine models to the Euro
swap rates and the Euribor futures data. The results are encouraging, showing
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5.6 Conclusions

Parameter Model

BDFS Chen

κ 1.83898 2.19415

ν 0.00480 0.00567

θ̄ 0.03463 0.42005

ζ 0.00171 0.03858

µ 1.75782 1.87003

v̄ 0.00004 0.02297

η 0.01222 0.01093

λ1 0.00175 -0.08109

λ2 -0.00461 -0.10111

λ3 0.00240 -0.03922

Table 5.2: Parameter estimates of the Euribor futures.
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Figure 5.7: Mean and standard errors between the fitted and observed Euribor
futures prices from 2 January 2004 until 30 December 2004 (calibration dataset).
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Figure 5.8: Mean and standard errors between the fitted and observed Euribor
futures prices from 2 January 2005 until 30 May 2005 (validation dataset).
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Figure 5.9: Errors between the fitted and observed Euribor futures prices from 2
January 2002 until 30 May 2005.
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that both models are capable in explaining the movement of the term structure of
the Euro swap rates and the Euribor futures. For the Euro swap data, considering
the larger cross-sectional data that was fitted, we found the models adequately
explain the movement of the swap rates. Although both models encounter diffi-
culty in fitting simultaneously the short and long end of the term structure. For
the Euribor futures, the three factor models fit the data exceptionally well and
able to capture simultaneously the movement of the underlying 3 month Euribor
rates.
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Conclusions and Future Research 6
6.1 Conclusions

In this thesis we have presented a continuous-time maximum likelihood method
to estimate the exponential-affine term structure models. The method rests on
the assumption that observations are affine functions of interest rate factors, and
observed with additive Gaussian noise with known covariance matrix. This place
our estimation method in the state-space approach of term structure estimation.
Unlike methods found in literature, we do not discretize either the interest rate
model nor the observation model. Within the framework of exponential-affine
model that we presented here, maximum likelihood estimates can be obtained
with an exact likelihood functional and not by an approximate quasi-likelihood
functional.

The most common approach in formulating observations in continuous-time
is to write the integrated observations as an stochastic differential equation. Thus,
the additive noise is essentially additive Brownian motion to the integrated ob-
servations. Furthermore, under this assumption the likelihood functional will
involve stochastic integration of the filtered estimate w.r.t. the integrated observa-
tion. Due to the stochastic integral term, computation of the likelihood functional
is difficult. Another problem arise because real data cannot be non differentiable
everywhere. One way to circumvent the difficulty, due to Balakrishnan (1977),
is to formulate the measurement in the white noise framework. The resulting
robust likelihood functional can be immediately applied to real data.

The computation of the likelihood functional will involve computation of fil-
tered estimates of the interest rate factors. We found the filtering procedure to
be the most challenging part of this research. In principle, filtered estimates of
the interest rate factors and other higher conditional moments can be found by
numerically solving the Zakai equation. For nonlinear model, the CIR model, it
is feasible to compute the filtering densities through Zakai equation. However,
it does come with a few quirks, mainly when the noise covariance is assumed
to be small. When the noise covariance is small, the splitting-up method which
is outlined in Chapter 3 becomes very inefficient. First of all, for the prediction
step, one will need to use small space discretization because the conditional den-
sities are very thin. Secondly, for the update step, one will need to use small time
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discretization due to limitation of the machine precision to handle large exponen-
tial values. These problems essentially render the use of exact nonlinear filtering
impractical for multi-factor models.

Due to the large computation time imposed by the use of nonlinear filtering,
we propose a Gaussian approximation to the nonlinear filter. Using Gaussian
approximation, the filtering procedure amounts to solving a system of ordinary
differential equations. The ODE are similar to the (continuous-time) Kalman fil-
tering except that the equations between the conditional means and conditional
covariance are coupled. In experiments, we found that a small noise covariance
presents quite a challenge to standard ODE solvers. Using these standard solvers,
it is very difficult, if not impossible, to obtain a stable numerical solution to the
filtering ODE. In Chapter 3, we included a backward differentiation scheme to
solve the filtering ODE. Unlike off-the-shelves ODE solver that are not designed
specifically for the Gaussian filtering ODE, in our numerical scheme we have
taken advantage of the continuous-time Riccati equation appearing in the finite
difference equation. In experiments, we have found the numerical scheme to be
very stable.

In Chapter 4, we have conducted Monte-Carlo analysis of each of the compo-
nents of the continuous-time maximum likelihood method. First is the compari-
son between the exact nonlinear filtering and the approximate Gaussian filtering.
We found the Gaussian filtering to be quite accurate. The filtered estimates re-
sulted from the approximate filter is very close to the filtered estimates from the
exact nonlinear filter. Comparison of the likelihoods confirms that the robust
likelihood is indeed better than the Itô likelihood. Furthermore, the difference
between the estimates obtained using the nonlinear filter and those obtained us-
ing the Gaussian filter is generally small, although, Wilcoxon test have indicated
some mixed results.

In Chapter 5, we applied the continuous-time estimation method to the euro
swap rates and the Euribor futures. For the euro swap rates, the parameter esti-
mation is done using the yield implied from the swap rates. We compared two
3-factor models of interest rate, BDFS and Chen models. The result indicated that
both model adequately captures the movement of the swap rates, although none
can simultaneously capture the short and long end of the swap rate curve. The
result for Euribor futures is quite encouraging. Both models fit the futures prices
very well as evident by their small pricing errors. Both models are also able to
track the underlying 3-month Euribor rates.

6.2 Directions for Further Research

We first note that the application of the method presented here is not limited to
the term structure of interest rates. There are a number of asset pricing models
that can be categorized as exponential-affine, e.g. the Heston stochastic volatility
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model. By applying the Heston model in the commodity, foreign exchange or en-
ergy markets, estimation of parameters using the method described in this thesis
is possible using observations from forward or futures prices.

The assumption that the noise covariance is known is the main limitation of
the method presented in this thesis. Unfortunately for the general exponential-
affine model, there are no exact guidelines in finding the noise covariance. How-
ever, for the Gaussian models, it is possible to include the noise covariance as
part of the unknown parameters. The details of the procedure and proof of con-
vergence can be found in (Bagchi (1975)). One may conduct Monte-Carlo studies
in order to provide indications that the method will work for the more general
exponential-affine. We did not pursue this possibility in the thesis due the diffi-
culty in finding parameter estimates that (globally) maximize the likelihood func-
tional. Adding more unknowns to the optimization procedure will only worsen
the problem.

We found the optimization of the likelihood functional to be quite challeng-
ing. In optimizing the likelihood functional, simulated annealing, grid search
and multi-starting points with local optimization procedure have been used in
the literature. In this thesis, we have adopted the last approach. Parameter esti-
mates of real-data reported in chapter 4 and 5 are parameter estimates that lead
to the highest likelihood among 100 locally optimizing parameter estimates. Ex-
periments indicated that it is difficult to estimate the parameter that has little
influence to the observation. For example, in the case of yield observations in the
CIR model, the parameter κ does not really affect the value of yield. The parame-
ter κ + λ is. As a result, there are many local minima’s that lead to almost similar

value of κ̂ + λ̂. Identifying an equivalent model where the risk neutral drift is κ̃

while the drift under the real measure is κ̃ − λ helps. Optimization of the like-
lihood is increasingly difficult when the noise covariance decreases. Assuming
that we know the true noise covariance, if one is able to measure the effect of
assigning a larger noise covariance to the resulting parameter estimates, it may
be possible to use parameter estimates obtained using larger covariance as the
starting point to the actual estimation with the true (smaller) noise covariance.
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Parameterization of BDFS and

Chen Models A

Model Additional Stationarity Boundary

BDFS θ̄ > 0, v̄ > 0 κ > 0, ν > 0, µ > 0 2µv̄ − η2 > 0

ζ > 0, η > 0 µ − λ3η > 0

Chen θ̄ > 0, v̄ > 0 κ > 0, ν > 0, µ > 0 2νθ̄ − ζ2 > 0

ζ > 0, η > 0 ν − λ2ζ > 0, µ − λ3η > 0 2µv̄ − η2 > 0

Table A.1: Parameter constraints for BDFS and Chen models
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Summary

This thesis addresses the problem of parameter estimation of the exponential-
affine class of models, which is a class of multi-factor models for the short rate.
We propose a continuous-time maximum likelihood estimation method to esti-
mate the parameters of a short rate model, given set of observations that are lin-
ear with respect to the interest rate factors. We assume that observations are cor-
rupted by Gaussian noise with a known covariance, which lead to a maximum
likelihood estimation method for partially observed systems. Unlike other ap-
proaches in the literature, we do not discretize either the interest rate model or
the observation model.

By assuming that the observations are noisy, parameter estimation involves
a filtering step to estimate the unknown interest rate factors. In order to fil-
ter/estimate the unknown factors one needs to solve the Zakai partial differential
equation (PDE) for the conditional density. It is possible to approximate the so-
lution of the Zakai PDE with finite differences accurately. We have tested this
approach to the CIR model.

Unfortunately, by numerically solving the Zakai PDE, the estimation method
becomes impractical due to the heavy computational burden. In order to cir-
cumvent this difficulty, we propose a Gaussian approximation that resulted in
coupled ordinary differential equations (ODE). For a reasonably large noise co-
variance, one can employ standard ODE solvers. However, it is increasingly diffi-
cult to obtain stable numerical solution when the noise covariance decreases. We
develop a numerical scheme that addresses this problem. From experiments, we
have found that the proposed numerical method is very stable. With the Gaussian
filtering, we estimate the parameters of Chen and Balduzzi-Das-Sundaram-Foresi
(BDFS) models using the Euro swap rates and Euribor future prices. Theoretical
swap rates and future prices computed from estimated models are in good agree-
ments with the quoted swap rates and futures prices.
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Samenvatting

Dit proefschrift pakt het probleem aan van parameterschatting van exponentieel
affiene modellen, die een klasse vormen van multifactor-modellen voor het korte
rentetarief. Gegeven een reeks observaties die met betrekking tot de rentetarief-
factoren lineair zijn, stellen wij een schattingsmethode voor van maximumwaar
schijnlijkheid in de continue tijd om de parameters van een kort rentetariefmodel
te schatten. Wij veronderstellen dat de observaties door Gaussische ruis met
een bekende covariantie worden beinvloed, hetgeen tot een methode van maxi-
mumwaarschijnlijkheid schatting voor gedeeltelijk waargenomen systemen leidt.
In tegenstelling tot andere benaderingen in de literatuur discretiseren wij het
rentetariefmodel en het observatiemodel niet.

Door te veronderstellen dat de observaties ruis bevatten, impliceert de param-
eterschatting een filterende stap om zo de onbekende rentetarieffactoren te schat-
ten. Om de onbekende factoren te filteren/schatten, moet men de Zakai partiële
differentiaalvergelijking (PDV) voor de voorwaardelijke kansdichtheid oplossen.
Het is mogelijk om de oplossing van de Zakai PDV nauwkeurig te benaderen.
Wij hebben deze benadering op het CIR model getest.

Door de Zakai PDV numeriek op te lossen, wordt de schattingsmethode on-
praktisch door de grote rekenintensiviteit. Om deze moeilijkheid te omzeilen,
stellen wij een Gaussische benadering voor, die in gekoppelde gewone differen-
tiaalvergelijkingen (GDV) resulteert. Voor een redelijk grote ruiscovariantie kan
men standaard solvers op de GDV toepassen. Het wordt echter steeds moeilijker
om stabiele numerieke oplossingen te verkrijgen naarmate de ruiscovariantie ver-
mindert. We hebben een numerieke regeling ontwikkeld, die dit probleem aan-
pakt. We hebben vervolgens experimenteel geconstateerd dat deze numerieke
methode zeer stabiel is. Met Gaussisch filteren schatten we de parameters van
de Chen en Balduzzi-Das-Sundaram-Foresi (BDFS) modellen, waar we de Euro
ruilmiddeltarieven en de Euribor future prijzen hebben gebruikt. De ruilmid-
deltarieven en de future prijzen die door de geschatte modellen worden voor-
speld, zijn in goede overeenkomst met de opgegeven ruilmiddeltarieven en de
future prijzen.
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